Salameh N, Larrat B, Abarca-Quinones J, Pallu S, Dorvillius M, Leclercq I, Fink M, Sinkus R, Van Beers BE (2009) Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 253:90–97. https://doi.org/10.1148/radiol.2523081817
Article
Google Scholar
Canu E et al (2011) Mapping the structural brain changes in Alzheimer’s disease: the independent contribution of two imaging modalities. J Alzheimers Dis 26:263–274. https://doi.org/10.3233/JAD-2011-0040
Article
Google Scholar
Sack I, Jöhrens K, Würfel J, Braun J (2013) Structure-sensitive elastography: on the viscoelastic powerlaw behavior of in vivo human tissue in health and disease. Soft Matter 9:5672. https://doi.org/10.1039/c3sm50552a
Article
Google Scholar
Qin EC, Jugé L, Lambert SA, Paradis V, Sinkus R, Bilston LE (2014) In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by anisotropic MR elastographic imaging: the mdx mouse model of muscular dystrophy. Radiology 273:726–735. https://doi.org/10.1148/radiol.14132661
Article
Google Scholar
Wuerfel J et al (2010) MR-elastography reveals degradation of tissue integrity in multiple sclerosis. Neuroimage 49:2520–2525. https://doi.org/10.1016/j.neuroimage.2009.06.018
Article
Google Scholar
Guimarães CF, Gasperini L, Marques AP, Reis RL (2020) The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater 5:351–370. https://doi.org/10.1038/s41578-019-0169-1
Article
Google Scholar
Tweten DJ, Okamoto RJ, Bayly PV (2017) Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: a computational study: accurate estimation of anisotropic material parameters by MRE. Magn Reson Med 78:2360–2372. https://doi.org/10.1002/mrm.26600
Article
Google Scholar
Schmidt JL, Tweten DJ, Benegal AN, Walker CH, Portnoi TE, Okamoto RJ, Garbow JR, Bayly PV (2016) Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue. J Biomech 49:1042–1049. https://doi.org/10.1016/j.jbiomech.2016.02.018
Article
Google Scholar
Kalra P, Raterman B, Mo X, Kolipaka A (2019) Magnetic resonance elastography of brain: comparison between anisotropic and isotropic stiffness and its correlation to age. Magn Reson Med 82:671–679. https://doi.org/10.1002/mrm.27757
Article
Google Scholar
Guertler CA, Okamoto RJ, Ireland JA, Pacia CP, Garbow JR, Chen H, Phillip PV (2020) Estimation of anisotropic material properties of soft tissue by MRI of ultrasound-induced shear waves. J Biomech Eng 142:031001. https://doi.org/10.1115/1.4046127
Article
Google Scholar
Shams M, Destrade M, Ogden RW (2011) Initial stresses in elastic solids: constitutive laws and acoustoelasticity. Wave Motion 48:552–567. https://doi.org/10.1016/j.wavemoti.2011.04.004
MathSciNet
Article
MATH
Google Scholar
Crutison J, Sun M, Royston TJ (2022) The combined importance of finite dimensions, anisotropy, and pre-stress in acoustoelastography. J Acoust Soc Am 151:2403–2413. https://doi.org/10.1121/10.0010110
Article
Google Scholar
Strategic plan, Radiological Society of North America. https://www.rsna.org/about/reports/strategic-plan. (Accessed Mar 02, 2022)
Abramson RG et al (2015) Methods and challenges in quantitative imaging biomarker development. Acad Radiol 22:25–32. https://doi.org/10.1016/j.acra.2014.09.001
Article
Google Scholar
Chatelin S, Deck C, Willinger R (2013) An anisotropic viscous hyperelastic constitutive law for brain material finite-element modeling. J Biorheol 27:26–37. https://doi.org/10.1007/s12573-012-0055-6
Article
Google Scholar
Green MA, Geng G, Qin E, Sinkus R, Gandevia SC, Bilston LE (2013) Measuring anisotropic muscle stiffness properties using elastography. NMR Biomed 26:1387–1394. https://doi.org/10.1002/nbm.2964
Article
Google Scholar
Guidetti M, Royston TJ (2019) Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography. J Mech Behav Biomed Mater 89:199–208. https://doi.org/10.1016/j.jmbbm.2018.09.032
Article
Google Scholar
Gennisson J-L, Grenier N, Combe C, Tanter M (2012) Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol 38:1559–1567. https://doi.org/10.1016/j.ultrasmedbio.2012.04.013
Article
Google Scholar
Wick C, Böl M, Müller F, Blickhan R, Siebert T (2018) Packing of muscles in the rabbit shank influences three-dimensional architecture of M. soleus. J Mech Behav Biomed Mater 83:20–27. https://doi.org/10.1016/j.jmbbm.2018.04.006
Article
Google Scholar
Kumar A, Khan NM, Anikhindi SA, Sharma P, Bansal N, Singla V, Arora A (2017) Correlation of transient elastography with hepatic venous pressure gradient in patients with cirrhotic portal hypertension: a study of 326 patients from India. World J Gastroenterol 23:687. https://doi.org/10.3748/wjg.v23.i4.687
Article
Google Scholar
Ryou M, Stylopoulos N, Baffy G (2020) Nonalcoholic fatty liver disease and portal hypertension. Explor Med 1:149–169. https://doi.org/10.37349/emed.2020.00011
Article
Google Scholar
Brinker S, Klatt D (2016) Demonstration of concurrent tensile testing and magnetic resonance elastography. J Mech Behav Biomed Mater 63:232–243. https://doi.org/10.1016/j.jmbbm.2016.06.020
Article
Google Scholar
Blemker SS, Pinsky PM, Delp SL (2005) A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 38:657–665. https://doi.org/10.1016/j.jbiomech.2004.04.009
Article
Google Scholar
Sahoo D, Deck C, Willinger R (2016) Brain injury tolerance limit based on computation of axonal strain. Accid Anal Prev 92:53–70. https://doi.org/10.1016/j.aap.2016.03.013
Article
Google Scholar
Colgan NC, Gilchrist MD, Curran KM (2010) Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations. Prog Biophys Mol Biol 103:304–309. https://doi.org/10.1016/j.pbiomolbio.2010.09.008
Article
Google Scholar
Stadelmann MA, Maquer G, Voumard B, Grant A, Hackney DB (2018) Integrating MRI-based geometry, composition and fiber architecture in a finite element model of the human intervertebral disc. J Mech Behav Biomed Mater 85:37–42. https://doi.org/10.1016/j.jmbbm.2018.05.005
Article
Google Scholar
Manduca A, Bayly PJ, Ehman RL, Kolipaka A, Royston TJ, Sack I, Sinkus R, VanBeers BE (2020) MR elastography: principles, guidelines, and terminology. Magn Reson Med. https://doi.org/10.1002/mrm.28627
Article
Google Scholar
Bolsterlee B, Finni T, D’Souza A, Eguchi J, Clarke EC, Herbert RD (2018) Three-dimensional architecture of the whole human soleus muscle in vivo. PeerJ 6:e4610. https://doi.org/10.7717/peerj.4610
Article
Google Scholar
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015
Article
Google Scholar
Clark JJ (1989) Authenticating edges produced by zero-crossing algorithms. IEEE Trans Pattern Anal Mach Intell 11:43–57. https://doi.org/10.1109/34.23112
Article
MATH
Google Scholar
Wallis SA, Georgeson MA (2009) Mach edges: local features predicted by 3rd derivative spatial filtering. Vision Res 49:1886–1893. https://doi.org/10.1016/j.visres.2009.04.026
Article
Google Scholar
Akleman E and Chen J (2005) Regular meshes. In: Proceedings of the 2005 ACM symposium on Solid and physical modeling - SPM ’05, pp 213–219. https://doi.org/10.1145/1060244.1060268
Grant JA (1970) Chebyshev polynomials in numerical analysis. Math Gaz 54:96–97. https://doi.org/10.2307/3613223
Article
Google Scholar
Yeh F-C, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng W-YI (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 8:e80713. https://doi.org/10.1371/journal.pone.0080713
Article
Google Scholar
Hormann K, Agathos A (2001) The point in polygon problem for arbitrary polygons. Comput Geom 20:131–144. https://doi.org/10.1016/S0925-7721(01)00012-8
MathSciNet
Article
MATH
Google Scholar
Lorensen WE and Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. In: SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 7. https://doi.org/10.1145/37401.37422
Yasar TK, Royston TJ, Magin RL (2013) Wideband MR elastography for viscoelasticity model identification. Magn Reson Med 70:479–489. https://doi.org/10.1002/mrm.24495
Article
Google Scholar
Klatt D, Yasar TK, Royston TJ, Magin RL (2013) Sample interval modulation for the simultaneous acquisition of displacement vector data in magnetic resonance elastography: theory and application. Phys Med Biol 58:8663–8675. https://doi.org/10.1088/0031-9155/58/24/8663
Article
Google Scholar
Walimbe VS, Zagrodsky V, Raja S, Bybel B, Kanvinde M, Shekhar R (2004) Elastic registration of 3D whole body CT and PET images by quaternion-based interpolation of multiple piecewise linear rigid-body registrations. Med Imaging 5370:119. https://doi.org/10.1117/12.535501
Article
Google Scholar
Hill DLG, Batchelor PG, Holden M, Hawkes DJ (2018) Medical image registration. Phys Med Biol. https://doi.org/10.1088/0031-9155/46/3/201
Article
Google Scholar
Fovargue D, Kozerke S, Sinkus R, Nordsletten D (2018) Robust MR elastography stiffness quantification using a localized divergence free finite element reconstruction. Med Image Anal 44:126–142. https://doi.org/10.1016/j.media.2017.12.005
Article
Google Scholar
Papazoglou S, Hirsch S, Braun J, Sack I (2012) Multifrequency inversion in magnetic resonance elastography. Phys Med Biol 57:2329–2346. https://doi.org/10.1088/0031-9155/57/8/2329
Article
Google Scholar