Skip to main content

A cascadic multilevel optimization framework for the concurrent design of the fiber-reinforced composite structure through the NURBS surface

Abstract

This paper proposes a novel cascadic multilevel optimization framework for the fiber-reinforced composite structure, inspired by the character of the non-uniform rational basis spline (NURBS) surface, to control the structural topology, fiber angle distribution, and to improve the computational efficiency. The NURBS surface is not only used for the calculation of the structural response and the geometry modeling of the design but also introduced to construct the hierarchy of the parameterization of design variables. The optimization problem is formulated and solved successively from a coarse mesh level to the finest mesh level. The initial design of a fine level is computed using the solution of a coarse level. The number of meshes and design variables is gradually increased, and the design freedom and the resolution of parameterization remain the same to the optimization at the finest mesh level. Because there are fewer design variables and meshes at the coarse level and the finest level is used to find an accurate solution, it efficiently reduces the computational cost of the optimization. Meanwhile, the local support character of the NURBS surface avoids the checkerboard phenomenon and improves the continuity of local fiber angle. Several numerical examples for compliance minimization are presented to verify the effectiveness of the proposed method.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Abbreviations

NURBS:

Non-uniform rational basis spline

TO:

Topology optimization

SIMP:

Solid isotropic material with penalization

LSM:

Level set method

ESO:

Evolutionary structural optimization

MMC:

Moving morphable components

MMV:

Moving morphable void

MS2L:

Multi-scale two-level

DMO:

Discrete material optimization

FEM:

Finite-element method

IGA:

Isogeometric analysis

MMA:

Method of moving asymptotes

References

  1. Zhou M, Rozvany GIN (1991) The coc algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Article  Google Scholar 

  2. Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    MATH  Article  Google Scholar 

  3. Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163:489–528

    MathSciNet  MATH  Article  Google Scholar 

  4. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    MathSciNet  MATH  Article  Google Scholar 

  5. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    MathSciNet  MATH  Article  Google Scholar 

  6. Huang X, Xie M (2010) Evolutionary topology optimization of continuum structures: methods and applications. Wiley

    MATH  Book  Google Scholar 

  7. Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components-based framework. J Appl Mech Trans ASME 81:081009

    Article  Google Scholar 

  8. Zhang WS, Li D, Zhou JH, Du ZL, Li BJ, Guo X (2018) A moving morphable void (mmv)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Eng 334:381–413

    MathSciNet  MATH  Article  Google Scholar 

  9. van de Werken N, Hurley J, Khanbolouki P, Sarvestani AN, Tamijani AY, Tehrani M (2019) Design considerations and modeling of fiber reinforced 3D printed parts. Compos B Eng 160:684–692

    Article  Google Scholar 

  10. Nikbakt S, Kamarian S, Shakeri M (2018) A review on optimization of composite structures part I: laminated composites. Compos Struct 195:158–185

    Article  Google Scholar 

  11. Montemurro M, Catapano A (2019) A general B-Spline surfaces theoretical framework for optimisation of variable angle-tow laminates. Compos Struct 209:561–578

    Article  Google Scholar 

  12. Montemurro M, Catapano A (2017) On the effective integration of manufacturability constraints within the multi-scale methodology for designing variable angle-tow laminates. Compos Struct 161:145–159

    Article  Google Scholar 

  13. Fiordilino GA, Izzi MI, Montemurro M (2020) A general isogeometric polar approach for the optimisation of variable stiffness composites: application to eigenvalue buckling problems. Mech Mater 153:103574

    Article  Google Scholar 

  14. Izzi MI, Montemurro M, Catapano A, Pailhès J (2020) A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures. Compos Struct 237:111908

    Article  Google Scholar 

  15. Montemurro M, Catapano A (2016) A new paradigm for the optimum design of variable angle tow laminates. Springer

    MATH  Book  Google Scholar 

  16. Scardaoni MP, Montemurro M (2020) Convex or non-convex? On the nature of the feasible domain of laminates. Eur J Mech A Solid 85:104112

    MathSciNet  MATH  Article  Google Scholar 

  17. Izzi MI, Catapano A, Montemurro M (2021) Strength and mass optimisation of variable-stiffness composites in the polar parameters space. Struct Multidiscip Optim 64:2045–2073

    MathSciNet  Article  Google Scholar 

  18. Catapano A, Montemurro M (2020) Strength optimisation of variable angle-tow composites through a laminate-level failure criterion. J Optim Theory Appl 187:683–706

    MathSciNet  MATH  Article  Google Scholar 

  19. Ghiasi H, Pasini D, Lessard L (2009) Optimum stacking sequence design of composite materials part I: constant stiffness design. Compos Struct 90:1–11

    Article  Google Scholar 

  20. Ghiasi H, Fayazbakhsh K, Pasini D, Lessard L (2010) Optimum stacking sequence design of composite materials part II: variable stiffness design. Compos Struct 93:1–13

    Article  Google Scholar 

  21. Xia Q, Shi TL (2017) Optimization of composite structures with continuous spatial variation of fiber angle through shepard interpolation. Compos Struct 182:273–282

    Article  Google Scholar 

  22. Tian Y, Pu S, Zong Z, Xia Q (2019) Optimization of variable stiffness laminates with gap-overlap and curvature constraints. Compos Struct 230:111494

    Article  Google Scholar 

  23. Stegmann J, Lund E (2005) Discrete material optimization of general composite shell structures. Int J Numer Methods Eng 62:2009–2027

    MATH  Article  Google Scholar 

  24. Tian Y, Pu S, Shi T, Xia Q (2021) A parametric divergence-free vector field method for the optimization of composite structures with curvilinear fibers. Comput Methods Appl Mech Eng 373:113574

    MathSciNet  MATH  Article  Google Scholar 

  25. Brampton CJ, Wu KC, Kim HA (2015) New optimization method for steered fiber composites using the level set method. Struct Multidiscip Optim 52:493–505

    MathSciNet  Article  Google Scholar 

  26. Papapetrou VS, Patel C, Tamijani AY (2020) Stiffness-based optimization framework for the topology and fiber paths of continuous fiber composites. Compos B 183:107681

    Article  Google Scholar 

  27. Xia ZH, Wang YJ, Wang QF, Mei C (2017) Gpu parallel strategy for parameterized lsm-based topology optimization using isogeometric analysis. Struct Multidiscip Optim 56:413–434

    MathSciNet  Article  Google Scholar 

  28. Li WC, Suryanarayana P, Paulino GH (2020) Accelerated fixed-point formulation of topology optimization: application to compliance minimization problems. Mech Res Commun 103:103469

    Article  Google Scholar 

  29. Liao ZY, Zhang Y, Wang YJ, Li W (2019) A triple acceleration method for topology optimization. Struct Multidiscip Optim 60(2):727–744

    MathSciNet  Article  Google Scholar 

  30. Ding H, Xu B (2021) A novel discrete-continuous material orientation optimization model for stiffness-based concurrent design of fiber composite. Compos Struct 273:114288

    Article  Google Scholar 

  31. Xia Q, Shi T (2018) A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on Shepard interpolation. Compos Struct 188:209–219

    Article  Google Scholar 

  32. Shi S, Zhou P, Lü Z (2021) A density-based topology optimization method using radial basis function and its design variable reduction. Struct Multidiscip Optim 64:2149–2163

    MathSciNet  Article  Google Scholar 

  33. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    MathSciNet  MATH  Article  Google Scholar 

  34. Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116

    MathSciNet  MATH  Article  Google Scholar 

  35. Gao J, Xiao M, Zhang Y,Gao L.(2020)A comprehensive review of isogeometric topology optimization: methods, applications and prospects.Chin J Mech Eng 33:87

    Article  Google Scholar 

  36. Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization using trimmed spline surfaces. Comput Methods Appl Mech Eng 199:3270–3296

    MathSciNet  MATH  Article  Google Scholar 

  37. Gao J, Gao L, Luo Z, Li P (2019) Isogeometric topology optimization for continuum structures using density distribution function. Int J Numer Methods Eng 119:991–1017

    MathSciNet  Article  Google Scholar 

  38. Gao J, Xue H, Gao L, Luo Z (2019) Topology optimization for auxetic metamaterials based on isogeometric analysis. Comput Methods Appl Mech Eng 352:211–236

    MathSciNet  MATH  Article  Google Scholar 

  39. Gao J, Luo Z, Xiao M, Gao L, Li P (2020) A NURBS-based multi-material interpolation (N-MMI) for isogeometric topology optimization of structures. Appl Math Model 81:818–843

    MathSciNet  MATH  Article  Google Scholar 

  40. Roiné T, Montemurro M, Pailhès J (2021) Stress-based topology optimization through non-uniform rational basis spline hyper-surfaces. Mech Adv Mater Struct 1:1–29

  41. Costa G, Montemurro M, Pailhes J (2019) Minimum length scale control in a NURBS-based SIMP method. Comput Methods Appl Mech Eng 354:963–989

    MathSciNet  MATH  Article  Google Scholar 

  42. Tavakkoli S, Mehdi S (2017) An isogeometrical approach to structural level set topology optimization. Comput Methods Appl Mech Eng 319:240–257

    MathSciNet  MATH  Article  Google Scholar 

  43. Hao P, Yuan X, Liu C, Wang B, Liu H, Li G (2018) An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels. Comput Methods Appl Mech Eng 339:205–238

    MathSciNet  MATH  Article  Google Scholar 

  44. Costa G, Montemurro M, Pailhès J (2021) NURBS hypersurfaces for 3D topology optimisation problems. Mechanics of advanced materials and structures. Mech Adv Mater Struct 28(7):665–684

    Article  Google Scholar 

  45. Montemurro M, Bertolino G, Roiné T (2021) A general multi-scale topology optimisation method for lightweight lattice structures obtained through additive manufacturing technology. Compos Struct 258:113360

    Article  Google Scholar 

  46. Bertolino G, Montemurro M (2021) Two-scale topology optimisation of cellular materials under mixed boundary conditions. Int J Mech Sci 216:106961

    Article  Google Scholar 

  47. Montemurro M, Refai K, Catapano A (2022) Thermal design of graded architected cellular materials through a CAD-compatible topology optimisation method. Compos Struct 280:114862

    Article  Google Scholar 

  48. Liu H, Yang D, Hao P, Zhu X (2018) Isogeometric analysis based topology optimization design with global stress constraint. Comput Methods Appl Mech Eng 342:625–652

    MathSciNet  MATH  Article  Google Scholar 

  49. Spink M, Claxton D, Falco C de, Vazquez R (2010) NURBS toolbox. Octave Forge. Accessed 29 June 2007, https://octave.sourceforge.io/nurbs/overview.html

  50. Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573

    MathSciNet  MATH  Article  Google Scholar 

  51. Wang Y, Benson DJ (2016) Isogeometric analysis for parameterized LSM-based structural topology optimization. Comput Mech 57:19–35

    MathSciNet  MATH  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (11872311) and the Natural Science Basic Research Plan in Shaanxi Province of China (2020JM085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Xu or Xiaodong Huang.

Ethics declarations

Conflict of interests

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, H., Xu, B., Duan, Z. et al. A cascadic multilevel optimization framework for the concurrent design of the fiber-reinforced composite structure through the NURBS surface. Engineering with Computers (2022). https://doi.org/10.1007/s00366-022-01639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-022-01639-0

Keywords

  • Isogeometric analysis
  • Cascadic multilevel optimization
  • Fiber-reinforced composite structure
  • NURBS