Skip to main content
Log in

Interactive PDE patch-based surface modeling from vertex-frames

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Polygon, subdivision, and NURBS are three mainstream modeling techniques widely applied in commercial software packages. They require heavy manual operations, and involve a lot of design variables leading to big data, high storage costs and slow network transmissions. In this paper, we integrate the strengths of boundary-based surface creation and partial differential equation (PDE)-based geometric modeling to obtain the first analytical \(C^0\) continuous 4-sided PDE patches involving sculpting force-based shape creation and manipulation and use them to develop an interactive modeling technique for easy and quick creation of 3D models with small data from vertex-frames. With this modeling technique, a vertex frame is defined by eight vertices, and a \(C^0\) continuous 4-sided PDE patch is created from the vertex-frame through an analytical solution to a vector-valued second-order PDE subjected to the boundary conditions determined by the eight vertices of a vertex-frame. A user-friendly interface is developed from the obtained analytical solution, which enables users to interactively input and modify vertex-frame models easily and create 3D models in real time. Different surface modeling tasks are carried out to test the developed interactive tool and compare our proposed method with polygon and NURBS modeling and Coons surfaces. The results demonstrate the effectiveness of our proposed method and its advantages in reducing design variables, saving storage costs, and effective shape creation and manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mario R (2006) Polygonal modeling: basic and advanced techniques. Jones and Bartlett Learning, Burlington

    Google Scholar 

  2. Les P, Wayne T (1997) The NURBS book. Springer, Berlin

    MATH  Google Scholar 

  3. Warren J, Weimer H (2001) Subdivision methods for geometric design: a constructive approach. 1st ed. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  4. Epstein M (2017) Partial Differential Equations in Engineering. In: Partial Differential Equations. Mathematical Engineering. Springer, Cham. pp 25–47

    Chapter  Google Scholar 

  5. Zhang JJ, You L (2002) PDE based surface representation—vase design. Comput Graph 26(1):89–98

    Article  Google Scholar 

  6. Du H, Qin H (2000) Direct manipulation and interactive sculpting of PDE surfaces. Comput Graph Forum 19:261–270

    Article  Google Scholar 

  7. Haixia D, Qin H (2005) Dynamic PDE-based surface design using geometric and physical constraints. Graph Models 67(1):43–71

    Article  MATH  Google Scholar 

  8. Brown JM, Bloor MIG, Bloor MS, Wilson MJ (1998) The accuracy of b-spline finite element approximations to PDE surfaces. Comput Methods Appl Mech Eng 158(3–4):221–234

    Article  MathSciNet  MATH  Google Scholar 

  9. Jacobson A, Tosun E, Sorkine O, Zorin D (2010) Mixed finite elements for variational surface modeling. Comput Graph Forum 29:1565–1574

    Article  Google Scholar 

  10. Liu D, Guoliang X (2007) A general sixth order geometric partial differential equation and its application in surface modeling. J Inf Comput Sci 4(1):129–140

    Google Scholar 

  11. Haixia D, Hong Q (2005) A shape design system using volumetric implicit PDEs. ACM SIGGRAPH Courses (SIGGRAPH'05). ACM, New York, 116-es

  12. Park J, Kim T, Baek S-Y, Lee K (2015) An algorithm for estimating surface normal from its boundary curves. J Comput Des Eng 2(1):67–72

    Google Scholar 

  13. Stanko T, Hahmann S, Bonneau G-P, Saguin-Sprynski N (2016) Surfacing curve networks with normal control. Comput Graph 60:1–8

    Article  Google Scholar 

  14. Pan Q, Guoliang X, Zhang Y (2014) A unified method for hybrid subdivision surface design using geometric partial differential equations. Comput Aided Des 46:110–119

    Article  Google Scholar 

  15. Schneider R, Kobbelt L (2001) Geometric fairing of irregular meshes for free-form surface design. Comput Aided Geom Des 18(4):359–379

    Article  MathSciNet  MATH  Google Scholar 

  16. Shuangbu Wang Y, Xia RW, You L, Zhang J (2019) Optimal NURBS conversion of PDE surface-represented high-speed train heads. Optim Eng 20(3):907–928

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang S, Ruibin YW, Xia ZS, You L, Zhang J (2021) Multi-objective aerodynamic optimization of high-speed train heads based on the PDE parametric modeling. Struct Multidiscip Optim 64(3):1285–1304

    Article  MathSciNet  Google Scholar 

  18. Bloor MIG, Wilson MJ (1990) Using partial differential equations to generate free-form surfaces. Comput Aided Des 22(4):202–212

    Article  MATH  Google Scholar 

  19. Zhang JJ, You LH (2004) Fast surface modelling using a 6th order PDE. Comput Graph Forum 23:311–320

    Article  Google Scholar 

  20. Ugail H, Bloor Malcolm IG, Wilson MJ (1999) Techniques for interactive design using the PDE method. ACM Trans Graph (TOG) 18(2):195–212

    Article  MATH  Google Scholar 

  21. Athanasopoulos M, Ugail H, Castro GG (2009) Parametric design of aircraft geometry using partial differential equations. Adv Eng Softw 40(7):479–486

    Article  MATH  Google Scholar 

  22. Bloor MIG, Wilson MJ (1989) Generating blend surfaces using partial differential equations. Comput Aided Des 21(3):165–171

    Article  MATH  Google Scholar 

  23. You L, Zhang JJ, Comninos P (2004) Blending surface generation using a fast and accurate analytical solution of a fourth-order PDE with three shape control parameters. Vis Comput 20(2–3):199–214

    Article  Google Scholar 

  24. You L, Zhang JJ (2003) Fast generation of 3-D deformable moving surfaces. IEEE Trans Syst Man Cybern Part B 33(4):616–625

    Article  MathSciNet  Google Scholar 

  25. Kubiesa S, Ugail H, Wilson M (2004) Interactive design using higher order PDEs. Vis Comput 20(10):682–693

    Article  Google Scholar 

  26. You LH, Comninos P, Zhang JJ (2004) PDE blending surfaces with c2 continuity. Comput Graph 28(6):895–906

    Article  Google Scholar 

  27. DeRose T, Kass M, Truong T (1998) Subdivision surfaces in character animation. In: Proceedings of the 25th Annual conference on Computer Graphics and Interactive Techniques, Citeseer, pp 85–94

  28. Tereza Flaxman (2008) Maya 2008 character modeling and animation: principles and practices. Cengage Learning, Boston

    Google Scholar 

  29. Farin G, Hansford D (1999) Discrete coons patches. Comput Aided Geom Des 16(7):691–700

    Article  MathSciNet  MATH  Google Scholar 

  30. Coons SA (1967) Surfaces for computer-aided design of space forms. Technical report, MASSACHUSETTS INST OF TECH CAMBRIDGE PROJECT MAC

  31. Bloor Malcolm IG, Wilson MJ, Hagen H (1995) The smoothing properties of variational schemes for surface design. Comput Aided Geom Des 12(4):381–394

    Article  MathSciNet  MATH  Google Scholar 

  32. Desbrun M, Meyer M, Schröder P, Barr AH (1999) Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Citeseer, pp 317–324

  33. Bloor MIG, Wilson MJ (1989) Blend design as a boundary-value problem. Theory and practice of geometric modeling. Springer, Berlin, pp 221–234

    Chapter  Google Scholar 

  34. Bloor Malcolm IG, Wilson MJ (1993) Functionality in solids obtained from partial differential equations. Geometric modelling. Springer, Vienna, pp 21–42

    Chapter  Google Scholar 

  35. Wang S, Nan Xiang Yu, Xia LY, Zhang J (2021) Real-time surface manipulation with \({C}^{1}\) continuity through simple and efficient physics-based deformations. Vis Comput 37(9–11):2741–2753

    Article  Google Scholar 

  36. Cignoni P, Rocchini C, Scopigno R (1998) Metro: measuring error on simplified surfaces. Comput Graph Forum 17:167–174

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the PDE-GIR project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 778035. Andrés Iglesias thanks the project TIN2017-89275-R funded by MCIN/ AEI /10.13039/501100011033/ FEDER “Una manera de hacer Europa”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangbu Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Analytical formulae of \({\bar{P}}_{{\bar{m}},{\bar{n}}}^{(k)}\) (\({\bar{m}}=i-1\), i, \(i+1\); \({\bar{n}}=j-1\), j, \(j+1\))

Appendix A: Analytical formulae of \({\bar{P}}_{{\bar{m}},{\bar{n}}}^{(k)}\) (\({\bar{m}}=i-1\), i, \(i+1\); \({\bar{n}}=j-1\), j, \(j+1\))

For \(S_{i,j}\) patch, \({\bar{P}}_{i,j}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i,j}^{(0)}=&{}P_{i,j}^{(1)},{\bar{P}}_{i,j}^{(1)}=-3P_{i,j}^{(1)} +4P_{i,j}^{(2)}-P_{i,j}^{(3)}+\frac{1}{2}{\bar{P}}_{i,j}^{(3)}\\ {\bar{P}}_{i,j}^{(2)}=&{}2P_{i,j}^{(1)}-4P_{i,j}^{(2)}+2P_{i,j}^{(3)}-\frac{3}{2}{\bar{P}}_{i,j}^{(3)}, {\bar{P}}_{i,j}^{(3)}=\frac{{\bar{A}}_{i,j}D_{i,j}-A_{i,j}{\bar{B}}_{i,j}}{{\bar{B}}_{i,j}B_{i,j}-D_{i,j}D_{i,j}},\\ {\bar{P}}_{i,j}^{(4)}=&{}4P_{i,j}^{(8)}-P_{i,j}^{(7)}-3P_{i,j}^{(1)}+\frac{1}{2}{\bar{P}}_{i,j}^{(6)}\\ {\bar{P}}_{i,j}^{(5)}=&{}-4P_{i,j}^{(8)}+2P_{i,j}^{(7)}+2P_{i,j}^{(1)}-\frac{3}{2}{\bar{P}}_{i,j}^{(6)}, {\bar{P}}_{i,j}^{(6)}=\frac{A_{i,j}D_{i,j}-{\bar{A}}_{i,j}B_{i,j}}{{\bar{B}}_{i,j}B_{i,j}-D_{i,j}D_{i,j}}\\ {\bar{P}}_{i,j}^{(7)}=&{}5P_{i,j}^{(1)}-4P_{i,j}^{(2)}-P_{i,j}^{(3)}+4P_{i,j}^{(4)}-3P_{i,j}^{(5)}+4P_{i,j}^{(6)}-P_{i,j}^{(7)}-4P_{i,j}^{(8)}\\ {\bar{P}}_{i,j}^{(8)}=&{}-2P_{i,j}^{(1)}+4P_{i,j}^{(2)}-2P_{i,j}^{(3)}+2P_{i,j}^{(5)}-4P_{i,j}^{(6)}+2P_{i,j}^{(7)}\\ {\bar{P}}_{i,j}^{(9)}=&{}-2P_{i,j}^{(1)}+2P_{i,j}^{(3)}-4P_{i,j}^{(4)}+2P_{i,j}^{(5)}-2P_{i,j}^{(7)}+4P_{i,j}^{(8)}\\ \end{array}\right. } \end{aligned}$$
((A.1))

where

$$\begin{aligned} \begin{aligned}&B_{i,j}\!\!=\!\!\sum _{m=1}^M\!\sum _{n=1}^N\!a_1^2(6u_m\!-\!3)^2, {\bar{B}}_{i,j}\!\!=\!\!\sum _{m=1}^M\!\sum _{n=1}^N\!a_2^2(6v_n\!-\!3)^2, {\bar{A}}_{i,j}\!\!=\!\!\sum _{m=1}^M\!\sum _{n=1}^N\!a_2(6v_n\!-\!3)F_{i,j}^{m,n}\\&D_{i,j}=\sum _{m=1}^M\sum _{n=1}^N a_1a_2(6u_m-3)(6v_n-3), A_{i,j}=\sum _{m=1}^M\sum _{n=1}^N a_1(6u_m-3)F_{i,j}^{m,n}\\ \end{aligned} \end{aligned}$$
((A.2))

and \(F_{i,j}^{m,n}\) is determined by

$$\begin{aligned} \begin{aligned} F_{i,j}^{m,n}=&4(a_1-a_1v_n+a_2-a_2u_m)P_{i,j}^{(1)}+8a_1(v_n-1)P_{i,j}^{(2)}+4(a_1-a_1v_n+a_2u_m)P_{i,j}^{(3)}\\&-8a_2u_mP_{i,j}^{(4)}+4(a_1v_n+a_2u_m)P_{i,j}^{(5)}-8a_1v_nP_{i,j}^{(6)}+4a_2(1-u_m)P_{i,j}^{(7)}+8a_2u_mP_{i,j}^{(8)}\\ \end{aligned} \end{aligned}$$
((A.3))

For \(S_{i,j+1}\) patch, \({\bar{P}}_{i,j+1}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i,j+1}^{(0)}=&{}\!\!\!{\bar{P}}_{i,j}^{(0)}+{\bar{P}}_{i,j}^{(1)}+{\bar{P}}_{i,j}^{(2)}+{\bar{P}}_{i,j}^{(3)} \\ {\bar{P}}_{i,j+1}^{(1)}=&{}\!\!\!4P_{i,j+1}^{(2)}-P_{i,j+1}^{(3)}-3{\bar{P}}_{i,j+1}^{(0)}+\frac{1}{2}{\bar{P}}_{i,j+1}^{(3)}\\ {\bar{P}}_{i,j+1}^{(2)}=&{}\!\!\!-4P_{i,j+1}^{(2)}+2P_{i,j+1}^{(3)}+2{\bar{P}}_{i,j+1}^{(0)}-\frac{3}{2}{\bar{P}}_{i,j+1}^{(3)}\\ {\bar{P}}_{i,j+1}^{(3)}=&{}\!\!\!\frac{\sum _{m=1}^M\sum _{n=1}^N a_1(6u_m-3)F_{i,j+1}^{m,n}}{\sum _{m=1}^M\sum _{n=1}^N a_1^2(6u_m-3)^2}\\ {\bar{P}}_{i,j+1}^{(4)}=&{}\!\!\!{\bar{P}}_{i,j}^{(4)}+{\bar{P}}_{i,j}^{(7)}+{\bar{P}}_{i,j}^{(8)}, {\bar{P}}_{i,j+1}^{(5)}={\bar{P}}_{i,j}^{(5)}+{\bar{P}}_{i,j}^{(9)}, {\bar{P}}_{i,j+1}^{(6)}={\bar{P}}_{i,j}^{(6)}\\ {\bar{P}}_{i,j+1}^{(7)}=&{}\!\!\!-3P_{i,j+1}^{(5)}-P_{i,j+1}^{(3)}+4P_{i,j+1}^{(4)}+4P_{i,j+1}^{(6)}-4P_{i,j+1}^{(2)}-3{\bar{P}}_{i,j+1}^{(4)}-2{\bar{P}}_{i,j+1}^{(5)}-\frac{3}{2}{\bar{P}}_{i,j+1}^{(6)}\\ {\bar{P}}_{i,j+1}^{(8)}=&{}\!\!\!2P_{i,j+1}^{(5)}-2P_{i,j+1}^{(3)}-4P_{i,j+1}^{(6)}+4P_{i,j+1}^{(2)}+2{\bar{P}}_{i,j+1}^{(4)}+2{\bar{P}}_{i,j+1}^{(5)}+2{\bar{P}}_{i,j+1}^{(6)}\\ {\bar{P}}_{i,j+1}^{(9)}=&{}\!\!\!2P_{i,j+1}^{(5)}+2P_{i,j+1}^{(3)}-4P_{i,j+1}^{(4)}-{\bar{P}}_{i,j+1}^{(5)}-\frac{3}{2}{\bar{P}}_{i,j+1}^{(6)}\\ \end{array}\right. } \end{aligned}$$
((A.4))

where

$$\begin{aligned} \begin{aligned} F_{i,j+1}^{m,n}=&2a_1(-4P_{i,j+1}^{(2)}+2P_{i,j+1}^{(3)}+2{\bar{P}}_{i,j+1}^{(0)}+v_n2{\bar{P}}_{i,j+1}^{(8)})\\&+2a_2({\bar{P}}_{i,j+1}^{(5)}+3v_n{\bar{P}}_{i,j+1}^{(6)}+u_m{\bar{P}}_{i,j+1}^{(9)})\\ \end{aligned} \end{aligned}$$
((A.5))

For \(S_{i+1,j}\) patch, \({\bar{P}}_{i+1,j}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i+1,j}^{(0)}=&{}\!\!\!{\bar{P}}_{i,j}^{(0)}+{\bar{P}}_{i,j}^{(4)}+{\bar{P}}_{i,j}^{(5)}+{\bar{P}}_{i,j}^{(6)} \\ {\bar{P}}_{i+1,j}^{(1)}=&{}\!\!\!{\bar{P}}_{i,j}^{(1)}+{\bar{P}}_{i,j}^{(7)}+{\bar{P}}_{i,j}^{(9)}, {\bar{P}}_{i+1,j}^{(2)}={\bar{P}}_{i,j}^{(2)}+{\bar{P}}_{i,j}^{(8)}, {\bar{P}}_{i+1,j}^{(3)}={\bar{P}}_{i,j}^{(3)}\\ {\bar{P}}_{i+1,j}^{(4)}=&{}\!\!\!4P_{i+1,j}^{(8)}-3{\bar{P}}_{i+1,j}^{(0)}-P_{i+1,j}^{(7)}+\frac{1}{2}{\bar{P}}_{i+1,j}^{(6)}\\ {\bar{P}}_{i+1,j}^{(5)}=&{}\!\!\!-4P_{i+1,j}^{(8)}+2{\bar{P}}_{i+1,j}^{(0)}+2P_{i+1,j}^{(7)}-\frac{3}{2}{\bar{P}}_{i+1,j}^{(6)}\\ {\bar{P}}_{i+1,j}^{(6)}=&{}\!\!\!\frac{\sum _{m=1}^M\sum _{n=1}^N a_2(6v_n-3)F_{i+1,j}^{m,n}}{\sum _{m=1}^M\sum _{n=1}^N a_2^2(6v_n-3)^2}\\ {\bar{P}}_{i+1,j}^{(7)}=&{}\!\!\!-3P_{i+1,j}^{(5)}-P_{i+1,j}^{(7)}+4P_{i+1,j}^{(6)}+4P_{i+1,j}^{(4)}\\ &{}\!\!\!-4P_{i+1,j}^{(8)}-3{\bar{P}}_{i+1,j}^{(1)}-2{\bar{P}}_{i+1,j}^{(2)}-\frac{3}{2}{\bar{P}}_{i+1,j}^{(3)}\\ {\bar{P}}_{i+1,j}^{(8)}=&{}\!\!\!2P_{i+1,j}^{(5)}+2P_{i+1,j}^{(7)}-4P_{i+1,j}^{(6)}-{\bar{P}}_{i+1,j}^{(2)}-\frac{3}{2}{\bar{P}}_{i+1,j}^{(3)}\\ {\bar{P}}_{i+1,j}^{(9)}=&{}\!\!\!2P_{i+1,j}^{(5)}-2P_{i+1,j}^{(7)}-4P_{i+1,j}^{(4)}+4P_{i+1,j}^{(8)}\\ &{}\!\!\!+2{\bar{P}}_{i+1,j}^{(1)}+2{\bar{P}}_{i+1,j}^{(2)}+2{\bar{P}}_{i+1,j}^{(3)}\\ \end{array}\right. } \end{aligned}$$
((A.6))

where

$$\begin{aligned} \begin{aligned} F_{i,j+1}^{m,n}=&2a_1({\bar{P}}_{i+1,j}^{(2)}+3u_m{\bar{P}}_{i+1,j}^{(3)}+v_n{\bar{P}}_{i+1,j}^{(8)})\\&+2a_2(u_m{\bar{P}}_{i+1,j}^{(9)}-4P_{i+1,j}^{(8)}+2{\bar{P}}_{i+1,j}^{(0)}+2P_{i+1,j}^{(7)})\\ \end{aligned} \end{aligned}$$
((A.7))

For \(S_{i,j-1}\) patch, \({\bar{P}}_{i,j-1}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i,j-1}^{(0)}=&{}P_{i,j-1}^{(1)},{\bar{P}}_{i,j-1}^{(1)}=-3P_{i,j-1}^{(1)}+4P_{i,j-1}^{(2)}-{\bar{P}}_{i,j}^{(0)}+\frac{1}{2}{\bar{P}}_{i,j-1}^{(3)}\\ {\bar{P}}_{i,j-1}^{(2)}=&{}2P_{i,j-1}^{(1)}-4P_{i,j-1}^{(2)}+2{\bar{P}}_{i,j}^{(0)}-\frac{3}{2}{\bar{P}}_{i,j-1}^{(3)}\\ {\bar{P}}_{i,j-1}^{(3)}=&{}\frac{\sum _{m=1}^M\sum _{n=1}^N a_1(6u_m-3)F_{i,j-1}^{m,n}}{\sum _{m=1}^M\sum _{n=1}^N a_1^2(6u_m-3)^2}\\ {\bar{P}}_{i,j-1}^{(4)}=&{}4P_{i,j-1}^{(8)}-3P_{i,j-1}^{(1)}-P_{i,j-1}^{(7)}+\frac{1}{2}{\bar{P}}_{i,j}^{(6)}\\ {\bar{P}}_{i,j-1}^{(5)}=&{}-4P_{i,j-1}^{(8)}+2P_{i,j-1}^{(1)}+2P_{i,j-1}^{(7)}-\frac{3}{2}{\bar{P}}_{i,j}^{(6)}, {\bar{P}}_{i,j-1}^{(6)}={\bar{P}}_{i,j}^{(6)}\\ {\bar{P}}_{i,j-1}^{(7)}=&{}4P_{i,j-1}^{(6)}-4P_{i,j-1}^{(2)}+5P_{i,j-1}^{(1)}-4P_{i,j-1}^{(8)}\\ &{}-P_{i,j-1}^{(7)}-2{\bar{P}}_{i,j}^{(5)}-\frac{5}{2}{\bar{P}}_{i,j}^{(6)}-{\bar{P}}_{i,j}^{(4)}\\ {\bar{P}}_{i,j-1}^{(8)}=&{}-4P_{i,j-1}^{(6)}+4P_{i,j-1}^{(2)}-2P_{i,j-1}^{(1)}+2P_{i,j-1}^{(7)}+2{\bar{P}}_{i,j}^{(5)}+2{\bar{P}}_{i,j}^{(6)}+2{\bar{P}}_{i,j}^{(4)}\\ {\bar{P}}_{i,j-1}^{(9)}=&{}4P_{i,j-1}^{(8)}-2P_{i,j-1}^{(7)}-2P_{i,j-1}^{(1)}+{\bar{P}}_{i,j}^{(5)}+\frac{3}{2}{\bar{P}}_{i,j}^{(6)}\\ \end{array}\right. } \end{aligned}$$
((A.8))

where

$$\begin{aligned} \begin{aligned} F_{i,j-1}^{m,n}=&2a_1(2P_{i,j-1}^{(1)}-4P_{i,j-1}^{(2)}+2{\bar{P}}_{i,j}^{(0)}+v_n{\bar{P}}_{i,j-1}^{(8)})\\&+2a_2({\bar{P}}_{i,j-1}^{(5)}-3v_n{\bar{P}}_{i,j-1}^{(6)}+u_m{\bar{P}}_{i,j-1}^{(9)})\\ \end{aligned} \end{aligned}$$
((A.9))

For \(S_{i-1,j}\) patch, \({\bar{P}}_{i-1,j}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i-1,j}^{(0)}=&{}P_{i-1,j}^{(1)}, {\bar{P}}_{i-1,j}^{(1)}=4P_{i-1,j}^{(2)}-3P_{i-1,j}^{(1)}-P_{i-1,j}^{(3)}+\frac{1}{2}{\bar{P}}_{i,j}^{(3)}\\ {\bar{P}}_{i-1,j}^{(2)}=&{}-4P_{i-1,j}^{(2)}+2P_{i-1,j}^{(1)}+2P_{i-1,j}^{(3)}-\frac{3}{2}{\bar{P}}_{i,j}^{(3)}, {\bar{P}}_{i-1,j}^{(3)}={\bar{P}}_{i,j}^{(3)}\\ {\bar{P}}_{i-1,j}^{(4)}=&{}4P_{i-1,j}^{(8)}-3P_{i-1,j}^{(1)}+\frac{1}{2}{\bar{P}}_{i-1,j}^{(6)}-{\bar{P}}_{i,j}^{(0)}\\ {\bar{P}}_{i-1,j}^{(5)}=&{}-4P_{i-1,j}^{(8)}+2P_{i-1,j}^{(1)}-\frac{3}{2}{\bar{P}}_{i-1,j}^{(6)}+2{\bar{P}}_{i,j}^{(0)}\\ {\bar{P}}_{i-1,j}^{(6)}=&{}\frac{\sum _{m=1}^M\sum _{n=1}^N a_2(6v_n-3)F_{i-1,j}^{m,n}}{\sum _{m=1}^M\sum _{n=1}^N a_2^2(6v_n-3)^2}\\ {\bar{P}}_{i-1,j}^{(7)}=&{}4P_{i-1,j}^{(4)}-4P_{i-1,j}^{(8)}+5P_{i-1,j}^{(1)}-4P_{i-1,j}^{(2)}\\ &{}-P_{i-1,j}^{(3)}-2{\bar{P}}_{i,j}^{(2)}-\frac{5}{2}{\bar{P}}_{i,j}^{(3)}-{\bar{P}}_{i,j}^{(1)}\\ {\bar{P}}_{i-1,j}^{(8)}=&{}-2P_{i-1,j}^{(1)}+4P_{i-1,j}^{(2)}-2P_{i-1,j}^{(3)}+{\bar{P}}_{i,j}^{(2)}+\frac{3}{2}{\bar{P}}_{i,j}^{(3)}\\ {\bar{P}}_{i-1,j}^{(9)}=&{}-4P_{i-1,j}^{(4)}+4P_{i-1,j}^{(8)}-2P_{i-1,j}^{(1)}+2P_{i-1,j}^{(3)}\\ &{}+2{\bar{P}}_{i,j}^{(2)}+2{\bar{P}}_{i,j}^{(3)}+2{\bar{P}}_{i,j}^{(1)}\\ \end{array}\right. } \end{aligned}$$
((A.10))

where

$$\begin{aligned} \begin{aligned} F_{i-1,j}^{m,n}=&2a_1({\bar{P}}_{i-1,j}^{(2)}+3u_m{\bar{P}}_{i-1,j}^{(3)}+v_n{\bar{P}}_{i-1,j}^{(8)})\\&+2a_2(u_m{\bar{P}}_{i-1,j}^{(9)}-4P_{i-1,j}^{(8)}+2P_{i-1,j}^{(1)}+2{\bar{P}}_{i,j}^{(0)})\\ \end{aligned} \end{aligned}$$
((A.11))

For \(S_{i+1,j+1}\) patch, \({\bar{P}}_{i+1,j+1}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i+1,j+1}^{(0)}\!=\!&{}{\bar{P}}_{i+1,j}^{(0)}+{\bar{P}}_{i+1,j}^{(1)}+{\bar{P}}_{i+1,j}^{(2)}+{\bar{P}}_{i+1,j}^{(3)}\\ {\bar{P}}_{i+1,j+1}^{(1)}=&{}{\bar{P}}_{i,j+1}^{(1)}+{\bar{P}}_{i,j+1}^{(7)}+{\bar{P}}_{i,j+1}^{(9)}, {\bar{P}}_{i+1,j+1}^{(2)}={\bar{P}}_{i,j+1}^{(2)}+{\bar{P}}_{i,j+1}^{(8)}, {\bar{P}}_{i+1,j+1}^{(3)}={\bar{P}}_{i,j+1}^{(3)}\\ {\bar{P}}_{i+1,j+1}^{(4)}=&{}{\bar{P}}_{i+1,j}^{(4)}+{\bar{P}}_{i+1,j}^{(7)}+{\bar{P}}_{i+1,j}^{(8)}, {\bar{P}}_{i+1,j+1}^{(5)}={\bar{P}}_{i+1,j}^{(5)}+{\bar{P}}_{i+1,j}^{(9)}, {\bar{P}}_{i+1,j+1}^{(6)}={\bar{P}}_{i+1,j}^{(6)}\\ {\bar{P}}_{i+1,j+1}^{(7)}=&{}-3P_{i+1,j+1}^{(5)}\!+\!4P_{i+1,j+1}^{(6)}\!+\!4P_{i+1,j+1}^{(4)}\!-\!5{\bar{P}}_{i+1,j+1}^{(0)}-3{\bar{P}}_{i+1,j+1}^{(1)}\!\\ &{}-\!2{\bar{P}}_{i+1,j+1}^{(2)}\!-\!\frac{3}{2}{\bar{P}}_{i+1,j+1}^{(3)}\!-\!3{\bar{P}}_{i+1,j+1}^{(4)}-2{\bar{P}}_{i+1,j+1}^{(5)}-\frac{3}{2}{\bar{P}}_{i+1,j+1}^{(6)}\\ {\bar{P}}_{i+1,j+1}^{(8)}=&{}2P_{i+1,j+1}^{(5)}-4P_{i+1,j+1}^{(6)}+2{\bar{P}}_{i+1,j+1}^{(0)}-{\bar{P}}_{i+1,j+1}^{(2)}\\ &{}-\frac{3}{2}{\bar{P}}_{i+1,j+1}^{(3)}\!+\!2{\bar{P}}_{i+1,j+1}^{(4)}\!+\!2{\bar{P}}_{i+1,j+1}^{(5)}\!+\!2{\bar{P}}_{i+1,j+1}^{(6)}\\ {\bar{P}}_{i+1,j+1}^{(9)}=&{}2P_{i+1,j+1}^{(5)}\!-\!4P_{i+1,j+1}^{(4)}\!+\!2{\bar{P}}_{i+1,j+1}^{(0)}\!+\!2{\bar{P}}_{i+1,j+1}^{(1)}\\ &{}+2{\bar{P}}_{i+1,j+1}^{(2)}\!+\!2{\bar{P}}_{i+1,j+1}^{(3)}\!-\!{\bar{P}}_{i+1,j+1}^{(5)}\!-\!\frac{3}{2}{\bar{P}}_{i+1,j+1}^{(6)}\\ \end{array}\right. } \end{aligned}$$
((A.12))

For \(S_{i-1,j-1}\) patch, \({\bar{P}}_{i-1,j-1}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i-1,j-1}^{(0)}=&{}P_{i-1,j-1}^{(1)}, {\bar{P}}_{i-1,j-1}^{(1)}=4P_{i-1,j-1}^{(2)}-3P_{i-1,j-1}^{(1)}+\frac{1}{2}{\bar{P}}_{i,j-1}^{(3)}-{\bar{P}}_{i-1,j}^{(0)}\\ {\bar{P}}_{i-1,j-1}^{(2)}=&{}-4P_{i-1,j-1}^{(2)}+2P_{i-1,j-1}^{(1)}-\frac{3}{2}{\bar{P}}_{i,j-1}^{(3)}+2{\bar{P}}_{i-1,j}^{(0)}\\ {\bar{P}}_{i-1,j-1}^{(3)}=&{}{\bar{P}}_{i,j-1}^{(3)}, {\bar{P}}_{i-1,j-1}^{(4)}=4P_{i-1,j-1}^{(8)}-3P_{i-1,j-1}^{(1)}+\frac{1}{2}{\bar{P}}_{i-1,j}^{(6)}-{\bar{P}}_{i,j-1}^{(0)}\\ {\bar{P}}_{i-1,j-1}^{(5)}=&{}-4P_{i-1,j-1}^{(8)}+2P_{i-1,j-1}^{(1)}-\frac{3}{2}{\bar{P}}_{i-1,j}^{(6)}+2{\bar{P}}_{i,j-1}^{(0)}, {\bar{P}}_{i-1,j-1}^{(6)}={\bar{P}}_{i-1,j}^{(6)}\\ {\bar{P}}_{i-1,j-1}^{(7)}=&{}5P_{i-1,j-1}^{(1)}-4P_{i-1,j-1}^{(2)}-4P_{i-1,j-1}^{(8)}+2{\bar{P}}_{i-1,j}^{(0)}\\ &{}+{\bar{P}}_{i-1,j}^{(4)}-\frac{1}{2}{\bar{P}}_{i-1,j}^{(6)}+{\bar{P}}_{i,j-1}^{(0)}-{\bar{P}}_{i,j-1}^{(2)}-\frac{3}{2}{\bar{P}}_{i,j-1}^{(3)}\\ {\bar{P}}_{i-1,j-1}^{(8)}=&{}-2P_{i-1,j-1}^{(1)}+4P_{i-1,j-1}^{(2)}-2{\bar{P}}_{i-1,j}^{(0)}+{\bar{P}}_{i,j-1}^{(2)}+\frac{3}{2}{\bar{P}}_{i,j-1}^{(3)}\\ {\bar{P}}_{i-1,j-1}^{(9)}=&{}-2P_{i-1,j-1}^{(1)}+4P_{i-1,j-1}^{(8)}-2{\bar{P}}_{i,j-1}^{(0)}+{\bar{P}}_{i-1,j}^{(5)}+\frac{3}{2}{\bar{P}}_{i-1,j}^{(6)}\\ \end{array}\right. } \end{aligned}$$
((A.13))

For \(S_{i-1,j+1}\) patch, \({\bar{P}}_{i-1,j+1}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i-1,j+1}^{(0)}=&{}{\bar{P}}_{i-1,j}^{(0)}+{\bar{P}}_{i-1,j}^{(1)}+{\bar{P}}_{i-1,j}^{(2)}+{\bar{P}}_{i-1,j}^{(3)}\\ {\bar{P}}_{i-1,j+1}^{(1)}=&{}4P_{i-1,j+1}^{(2)}-P_{i-1,j+1}^{(3)}-3{\bar{P}}_{i-1,j+1}^{(0)}+\frac{1}{2}{\bar{P}}_{i,j+1}^{(3)}\\ {\bar{P}}_{i-1,j+1}^{(2)}=&{}-4P_{i-1,j+1}^{(2)}+2P_{i-1,j+1}^{(3)}+2{\bar{P}}_{i-1,j+1}^{(0)}-\frac{3}{2}{\bar{P}}_{i,j+1}^{(3)}\\ {\bar{P}}_{i-1,j+1}^{(3)}=&{}{\bar{P}}_{i,j+1}^{(3)}, {\bar{P}}_{i-1,j+1}^{(4)}={\bar{P}}_{i-1,j}^{(4)}+{\bar{P}}_{i-1,j}^{(7)}+{\bar{P}}_{i-1,j}^{(8)}\\ {\bar{P}}_{i-1,j+1}^{(5)}=&{}{\bar{P}}_{i-1,j}^{(5)}+{\bar{P}}_{i-1,j}^{(9)}, {\bar{P}}_{i-1,j+1}^{(6)}={\bar{P}}_{i-1,j}^{(6)}\\ {\bar{P}}_{i-1,j+1}^{(7)}=&{}4P_{i-1,j+1}^{(4)}-P_{i-1,j+1}^{(3)}-4P_{i-1,j+1}^{(2)}+{\bar{P}}_{i-1,j+1}^{(0)}-2{\bar{P}}_{i-1,j+1}^{(4)}\\ &{}-{\bar{P}}_{i-1,j+1}^{(5)}-\frac{1}{2}{\bar{P}}_{i-1,j+1}^{(6)}-2{\bar{P}}_{i,j+1}^{(2)}-\frac{5}{2}{\bar{P}}_{i,j+1}^{(3)}-{\bar{P}}_{i,j+1}^{(1)}\\ {\bar{P}}_{i-1,j+1}^{(8)}=&{}-2P_{i-1,j+1}^{(3)}+4P_{i-1,j+1}^{(2)}-2{\bar{P}}_{i-1,j+1}^{(0)}+{\bar{P}}_{i,j+1}^{(2)}+\frac{3}{2}{\bar{P}}_{i,j+1}^{(3)}\\ {\bar{P}}_{i-1,j+1}^{(9)}=&{}-4P_{i-1,j+1}^{(4)}+2P_{i-1,j+1}^{(3)}+2{\bar{P}}_{i-1,j+1}^{(0)}+2{\bar{P}}_{i-1,j+1}^{(4)}\\ &{}+{\bar{P}}_{i-1,j+1}^{(5)}+\frac{1}{2}{\bar{P}}_{i-1,j+1}^{(6)}+2{\bar{P}}_{i,j+1}^{(1)}+2{\bar{P}}_{i,j+1}^{(2)}+2{\bar{P}}_{i,j+1}^{(3)}\\ \end{array}\right. } \end{aligned}$$
((A.14))

For \(S_{i+1,j-1}\) patch, \({\bar{P}}_{i+1,j-1}^{(k)}\) (\(k=0, 1, 2, 3,...,9\)) are explicitly determined by the following analytical formulae:

$$\begin{aligned} {\left\{ \begin{array}{ll} {\bar{P}}_{i+1,j-1}^{(0)}=&{}{\bar{P}}_{i,j-1}^{(0)}+{\bar{P}}_{i,j-1}^{(4)}+{\bar{P}}_{i,j-1}^{(5)}+{\bar{P}}_{i,j-1}^{(6)}\\ {\bar{P}}_{i+1,j-1}^{(1)}=&{}{\bar{P}}_{i,j-1}^{(1)}+{\bar{P}}_{i,j-1}^{(7)}+{\bar{P}}_{i,j-1}^{(9)}, {\bar{P}}_{i+1,j-1}^{(2)}={\bar{P}}_{i,j-1}^{(2)}+{\bar{P}}_{i,j-1}^{(8)}\\ {\bar{P}}_{i+1,j-1}^{(3)}=&{}{\bar{P}}_{i,j-1}^{(3)}, {\bar{P}}_{i+1,j-1}^{(4)}=4P_{i+1,j-1}^{(8)}-P_{i+1,j-1}^{(7)}-3{\bar{P}}_{i+1,j-1}^{(0)}+\frac{1}{2}{\bar{P}}_{i+1,j}^{(6)}\\ {\bar{P}}_{i+1,j-1}^{(5)}=&{}-4P_{i+1,j-1}^{(8)}+2P_{i+1,j-1}^{(7)}+2{\bar{P}}_{i+1,j-1}^{(0)}-\frac{3}{2}{\bar{P}}_{i+1,j}^{(6)}, {\bar{P}}_{i+1,j-1}^{(6)}={\bar{P}}_{i+1,j}^{(6)}\\ {\bar{P}}_{i+1,j-1}^{(7)}=&{}-4P_{i+1,j-1}^{(8)}-P_{i+1,j-1}^{(7)}+4P_{i+1,j-1}^{(6)}+{\bar{P}}_{i+1,j-1}^{(0)}-2{\bar{P}}_{i+1,j-1}^{(1)}\\ {} &{}-{\bar{P}}_{i+1,j-1}^{(2)}-\frac{1}{2}{\bar{P}}_{i+1,j-1}^{(3)}-{\bar{P}}_{i+1,j}^{(4)}-2{\bar{P}}_{i+1,j}^{(5)}-\frac{5}{2}{\bar{P}}_{i+1,j}^{(6)}\\ {\bar{P}}_{i+1,j-1}^{(8)}=&{}2P_{i+1,j-1}^{(7)}-4P_{i+1,j-1}^{(6)}+2{\bar{P}}_{i+1,j-1}^{(0)}+2{\bar{P}}_{i+1,j-1}^{(1)}\\ {} &{}+{\bar{P}}_{i+1,j-1}^{(2)}+\frac{1}{2}{\bar{P}}_{i+1,j-1}^{(3)}+2{\bar{P}}_{i+1,j}^{(4)}+2{\bar{P}}_{i+1,j}^{(5)}+2{\bar{P}}_{i+1,j}^{(6)}\\ {\bar{P}}_{i+1,j-1}^{(9)}=&{}4P_{i+1,j-1}^{(8)}-2P_{i+1,j-1}^{(7)}-2{\bar{P}}_{i+1,j-1}^{(0)}\\ &{}+{\bar{P}}_{i+1,j}^{(5)}+\frac{3}{2}{\bar{P}}_{i+1,j}^{(6)}\\ \end{array}\right. } \end{aligned}$$
((A.15))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Xia, Y., You, L. et al. Interactive PDE patch-based surface modeling from vertex-frames. Engineering with Computers 38, 4367–4385 (2022). https://doi.org/10.1007/s00366-022-01602-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-022-01602-z

Keywords

Navigation