Skip to main content
Log in

Building a T-spline-based tri-variate heterogeneous model of human airways: a reverse engineering approach

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The bronchial tree reconstruction is a challenging task due to its non-uniform topological boundaries and asymmetric branching pattern. Contrary to the conventional approaches of patch stitching and triangulation, this work uses a single-patch T-spline for the reverse engineering of human airways. The proposed methodology not only captures geometric details, but also illustrates the variation in the airway’s tissue properties along with the geometry. The process has been applied to develop a 3D airway model from the computed tomography (CT) scan data with preserved material information. The multi-material domain aids in representing airways internal details accurately. The proposed method has potential applications in fabrication, FEM analysis, and tissue engineering for complex branching structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ahookhosh K, Pourmehran O, Aminfar H, Mohammadpourfard M, Sarafraz MM, Hamishehkar H (2020) Development of human respiratory airway models: a review. Eur J Pharm Sci 145:105233

    Article  Google Scholar 

  2. Ding S, Ye Y, Tu J, Subic A (2010) Region-based geometric modelling of human airways and arterial vessels. Comput Med Imaging Graph 34:114–121

    Article  Google Scholar 

  3. Rosell J, Cabras P (2013) A three-stage method for the 3D reconstruction of the tracheobronchial tree from CT scans. Comput Med Imaging Graph 37:430–437

    Article  Google Scholar 

  4. Oropallo W, Piegl LA (2016) Ten challenges in 3D printing. Eng Comput 32:135–148

    Article  Google Scholar 

  5. Li B, Fu J, Feng J, Shang C, Lin Z (2020) Review of heterogeneous material objects modeling in additive manufacturing. Vis Comput Ind Biomed Art 3:6

    Article  Google Scholar 

  6. Li Q, Hong Q, Qi Q, Ma X, Han X, Tian J (2018) Towards additive manufacturing oriented geometric modeling using implicit functions. Vis Comput Ind Biomed Art 1:9

    Article  Google Scholar 

  7. Warkhedkar RM, Bhatt AD (2009) Material-solid modeling of human body: a heterogeneous B-spline based approach. Comput Aided Des 41:586–597

    Article  Google Scholar 

  8. Al Akhras H, Elguedj T, Gravouil A, Rochette M (2017) Towards an automatic isogeometric analysis suitable trivariate models generation—application to geometric parametric analysis. Comput Methods Appl Mech Eng 316:623–645

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng C, Taguchi Y (2017) FasTFit: a fast T-spline fitting algorithm. Comput Aided Des 92:11–21

    Article  Google Scholar 

  10. Liu L, Zhang YJ, Wei X (2015) Weighted T-splines with application in reparameterizing trimmed NURBS surfaces. Comput Methods Appl Mech Eng 295:108–126

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang W, Zhang Y, Xu G, Hughes TJ (2012) Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline. Comput Mech 50(1):65–84

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang W, Zhang Y, Liu L, Hughes TJ (2013) Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology. Comput Aided Des 45(2):351–360

    Article  MathSciNet  Google Scholar 

  13. Zhang YJ (2016) Geometric modeling and mesh generation from scanned images. Chapman and Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  14. Zhang Y, Wang W, Hughes TJ (2013) Conformal solid T-spline construction from boundary T-spline representations. Comput Mech 51(6):1051–1059

    Article  MathSciNet  MATH  Google Scholar 

  15. Li B, Fu J, Zhang YJ, Lin W, Feng J, Shang C (2020) Slicing heterogeneous solid using octree-based subdivision and trivariate T-splines for additive manufacturing. Rapid Prototyping J 26:164–175

    Article  Google Scholar 

  16. Liu L, Zhang Y, Hughes TJ, Scott MA, Sederberg TW (2014) Volumetric T-spline construction using Boolean operations. Eng Comput 30:425–439

    Article  Google Scholar 

  17. Pan M, Chen F, Tong W (2019) Volumetric spline parameterization for isogeometric analysis. Comput Methods Appl Mech Eng 359:112769

    Article  MathSciNet  MATH  Google Scholar 

  18. Vukicevic AM, Cimen S, Jagic N, Jovicic G, Frangi AF, Filipovic N (2018) Three-dimensional reconstruction and NURBS-based structured meshing of coronary arteries from the conventional X-ray angiography projection images. Sci Rep 8:1–20

    Article  Google Scholar 

  19. Updegrove AR, Shadden SC, Wilson NM (2019) Construction of analysis-suitable vascular models using axis-aligned polycubes. J Biomech Eng 141(6):060906

    Article  Google Scholar 

  20. Shang C, Fu J, Lin Z, Feng J, Li B (2018) Closed T-spline surface reconstruction from medical image data. Int J Precis Eng Manuf 19:1659–1671

    Article  Google Scholar 

  21. Sederberg TW, Zheng J (2001) T-splines and T-NURCCs. ACM Trans Graph 22(3):477–484

    Article  Google Scholar 

  22. Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199:229–263

    Article  MathSciNet  MATH  Google Scholar 

  23. Joshi K, Bhatt AD (2019) Experiments with T-mesh for constructing bifurcation and multi-furcation using periodic knot vectors. Comput Aided Des Appl 16:382–395

    Article  Google Scholar 

  24. Brown S, Bailey DL, Willowson K, Baldock C (2008) Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot 66:1206–1212

    Article  Google Scholar 

  25. Issac A, Parthasarathi M, Dutta MK (2015) An adaptive threshold based image processing technique for improved glaucoma detection & classification. Comput Methods Programs Biomed 122:229–244

    Article  Google Scholar 

  26. Kiraly AP, Reinhardt JM, Ho EA, Mclennan G, Higgins WE (2005) Virtual bronchoscopy for quantitative airway analysis. Proc SPIE Med Imaging 5746:369–383

    Article  Google Scholar 

  27. Chen Z, Zhong M, Luo Y, Deng L, Hu Z, Song Y (2019) Determination of rheology and surface tension of airway surface liquid: a review of clinical relevance and measurement techniques. Respir Res 20:1–14

    Article  Google Scholar 

  28. Biswal PK, Banerjee S (2010) A parallel approach for affine transform of 3D biomedical images. Int Conf Electron Inf Eng 1:329–332

    Google Scholar 

  29. Parsania PS, Virparia PV (2016) A comparative analysis of image interpolation algorithms. Int J Adv Res Comput Commun Eng 5(1):29–34

    Article  Google Scholar 

  30. Weibel ER, Sapoval B, Filoche M (2005) Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol 148:3–21

    Article  Google Scholar 

  31. Asthana V, Bhatt AD (2017) G1 continuous bifurcating and multi-bifurcating surface generation with B-splines. Comput Aided Des Appl 14:95–106

    Article  Google Scholar 

  32. Li B, Fu J, Zhang YJ, Pawar A (2020) A trivariate T-spline based framework for modeling heterogeneous solids. Comput Aided Geom Des 81:101882

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang KH (2018) Chapter 3: isoparametric formulation and mesh quality. Basic finite element method as applied to injury biomechanics. Academic Press, Cambridge, pp 111–149

    Chapter  Google Scholar 

  34. Ikuchi KEK, Aga TOH, Suruta KENU, Eno HIU, Shikawa TAI (2017) Effect of fluid viscosity on the cilia-generated flow on a mouse tracheal lumen. Ann Biomed Eng 45:1048–1057

    Article  Google Scholar 

  35. Lawrence DA, Branson B, Oliva I, Rubinowitz A (2014) MDCT of the central airways: anatomy and pathology. Appl Radiol 43:8–21

    Article  Google Scholar 

  36. Eom JS, Kim H, Jeon K, Um SW, Koh WJ, Suh GY, Chung MP, Kwon OJ (2013) Tracheal wall thickening is associated with the granulation tissue formation around silicone stents in patients with post-tuberculosis tracheal stenosis. Yonsei Med J 54(4):949–956

    Article  Google Scholar 

  37. Dettmer S, Entrup J, Schmidt M, Wall CD, Wacker F, Shin H (2012) Bronchial wall thickness measurement in computed tomography: Effect of intravenous contrast agent and reconstruction kernel. Eur J Radiol 81(11):3606–3613

    Article  Google Scholar 

  38. Telenga ED et al (2017) Airway wall thickness on HRCT scans decreases with age and increases with smoking. BMC Pulm Med 17(1):27

    Article  Google Scholar 

  39. Patyk M, Obojski A, Sokołowska-Dąbek D, Parkitna-Patyk M, Zaleska-Dorobisz U (2020) Airway wall thickness and airflow limitations in asthma assessed in quantitative computed tomography. Ther Adv Respir Dis 14:1–10

    Article  Google Scholar 

  40. Ulusoy M, Uysal II, Kivrak AS, Ozbek S, Karabulut AK, Paksoy Y, Dogan NU (2016) Age and gender related changes in bronchial tree: a morphometric study with multidedector CT. Eur Rev Med Pharmacol Sci 20(16):3351–3357

    Google Scholar 

  41. Seymour AH (2003) The relationship between the diameters of the adult cricoid ring and main tracheobronchial tree: a cadaver study to investigate the basis for double-lumen tube selection. J Cardiothorac Vasc Anesth 17(3):299–301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kritika Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, K., Bhatt, A.D. Building a T-spline-based tri-variate heterogeneous model of human airways: a reverse engineering approach. Engineering with Computers 38, 4085–4097 (2022). https://doi.org/10.1007/s00366-021-01569-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01569-3

Keywords

Navigation