Skip to main content
Log in

A novel conjoined space–time formulation for explicit analyses of dynamic models

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a novel explicit time-marching procedure is proposed, which adapts to the properties of the spatially discretized model. In this context, the time integrators of the method are locally defined, following the physical/geometrical features of the elements of the adopted spatial discretization, in a way that reduced dissipative and dispersive errors are provided, as well as extended stability limits are enabled. As it is discussed along this manuscript, the proposed novel conjoined space–time solution procedure is very simple to implement and to apply and it allows enhanced performances, providing better accuracy and more efficient analyses than standard time integration techniques. At the end of the paper, numerical results are presented, illustrating the versatility and effectiveness of the proposed new methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications INC., New York

    MATH  Google Scholar 

  2. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, New Jersey

    MATH  Google Scholar 

  3. Zienkiewicz OC, Xie YM (1991) A simple error estimator and adaptive time stepping procedure for dynamic analysis. Earthq Eng Struct Dynam 20:871–887

    Article  Google Scholar 

  4. Choi CK, Chung HJ (1996) Error estimates and adaptive time stepping for various direct time integration methods. Comput Struct 60:923–944

    Article  MathSciNet  MATH  Google Scholar 

  5. Logg A (2004) Multi-adaptive time-integration. Appl Numer Math 48:339–354

    Article  MathSciNet  MATH  Google Scholar 

  6. Rossi DF, Ferreira WG, Mansur WJ, Calenzani AFG (2014) A review of automatic time-stepping strategies on numerical time integration for structural dynamics analysis. Eng Struct 80:118–136

    Article  Google Scholar 

  7. Wang Y, Xue T, Tamma KK, Maxam D, Qin G (2021) A three-time-level a posteriori error estimator for GS4–2 framework: adaptive time stepping for second-order transient systems. Comput Methods Appl Mech Eng 384:113920

    Article  MathSciNet  MATH  Google Scholar 

  8. Daniel WJT (1997) Analysis and implementation of a new constant acceleration subcycling algorithm. Int J Numer Meth Eng 40:2841–2855

    Article  MATH  Google Scholar 

  9. Gravouil A, Combescure A (2001) Multi-time-step explicit–implicit method for non-linear structural dynamics. Int J Numer Meth Eng 50:199–225

    Article  MATH  Google Scholar 

  10. Dujardin G, Lafitte P (2016) Asymptotic behaviour of splitting schemes involving time-subcycling techniques. IMA J Numer Anal 36:1804–1841

    Article  MathSciNet  MATH  Google Scholar 

  11. Silva JEA, Loureiro FS, Mansur WJ, Wrobel LC (2018) An efficient multi-time step FEM–SFEM iterative coupling procedure for elastic–acoustic interaction problems. J Br Soc Mech Sci Eng 40:364

    Article  Google Scholar 

  12. Soares D (2016) A simple and effective single-step time marching technique based on adaptive time integrators. Int J Numer Meth Eng 109:1344–1368

    Article  MathSciNet  Google Scholar 

  13. Soares D (2020) A novel time-marching formulation for wave propagation analysis: the adaptive hybrid explicit method. Comput Methods Appl Mech Eng 366:113095

    Article  MathSciNet  MATH  Google Scholar 

  14. Soares D (2021) A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Comput Methods Appl Mech Eng 375:113647

    Article  MathSciNet  MATH  Google Scholar 

  15. Soares D (2021) Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Eng Comput. https://doi.org/10.1007/s00366-021-01290-1

    Article  Google Scholar 

  16. Soares D (2019) A model/solution-adaptive explicit-implicit time-marching technique for wave propagation analysis. Int J Numer Methods Eng 119:590–617

    Article  MathSciNet  Google Scholar 

  17. Soares D (2019) An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics. Comput Methods Appl Mech Eng 354:637–662

    Article  MathSciNet  MATH  Google Scholar 

  18. Soares D, Rodrigues MM (2021) An optimized explicit–implicit time-marching formulation for dynamic analysis. Int J Comput Methods 18:2050045

    Article  MathSciNet  MATH  Google Scholar 

  19. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Division ASCE 85:67–94

    Article  Google Scholar 

  20. Chung J, Hulbert JM (1993) A time integration method for structural dynamics with improved numerical dissipation: the generalized α method. J Appl Mech 30:371–375

    Article  MATH  Google Scholar 

  21. Bathe KJ, Baig MMI (2005) On a composite implicit time integration procedure for nonlinear dynamics. Comput Struct 83:2513–2534

    Article  MathSciNet  Google Scholar 

  22. Scuciato RF, Carrer JAM, Mansur WJ (2017) The time-dependent boundary element method formulation applied to dynamic analysis of Euler-Bernoulli beams: the linear θ method. Eng Anal Bound Elem 79:98–109

    Article  MathSciNet  MATH  Google Scholar 

  23. Kim W (2020) An improved implicit method with dissipation control capability: the simple generalized composite time integration algorithm. Appl Math Model 81:910–930

    Article  MathSciNet  MATH  Google Scholar 

  24. Malakiyeh MM, Shojaee S, Hamzehei-Javaran S, Bathe KJ (2021) New insights into the β1/β2-Bathe time integration scheme when L-stable. Comput Struct 245:106433

    Article  Google Scholar 

  25. Hulbert GM, Chung J (1996) Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods Appl Mech Eng 137:175–188

    Article  MathSciNet  MATH  Google Scholar 

  26. Souza LA, Carrer JAM, Martins CJ (2004) A fourth order finite difference method applied to elastodynamics: finite element and boundary element formulations. Struct Eng Mech 17:735–749

    Article  Google Scholar 

  27. Noh G, Bathe KJ (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193

    Article  Google Scholar 

  28. Soares D (2016) A novel family of explicit time marching techniques for structural dynamics and wave propagation. Comput Methods Appl Mech Eng 311:838–855

    Article  MathSciNet  MATH  Google Scholar 

  29. Wen W, Duan S, Tao Y, Liang J, Fang D (2017) An explicit time integration scheme based on B-spline interpolation and its application in wave propagation analysis. Int J Appl Mech 9:1750115

    Article  Google Scholar 

  30. Zhang HM, Xing YF (2019) Two novel explicit time integration methods based on displacement-velocity relations for structural dynamics. Comput Struct 221:127–141

    Article  Google Scholar 

  31. Kim W (2019) An accurate two-stage explicit time integration scheme for structural dynamics and various dynamic problems. Int J Numer Meth Eng 120:1–28

    Article  MathSciNet  Google Scholar 

  32. Wen W, Deng S, Duan S, Fang D (2021) A high-order accurate explicit time integration method based on cubic b-spline interpolation and weighted residual technique for structural dynamics. Int J Numer Meth Eng 122:431–454

    Article  MathSciNet  Google Scholar 

  33. Zhang J, Ankit A, Gravenkamp H, Eisenträger S, Song C (2021) A massively parallel explicit solver for elasto-dynamic problems exploiting octree meshes. Computer Methods in Appl Mech Eng 380:113811

    Article  MathSciNet  MATH  Google Scholar 

  34. Soares D (2015) A simple and effective new family of time marching procedures for dynamics. Comput Methods Appl Mech Eng 283:1138–1166

    Article  MathSciNet  MATH  Google Scholar 

  35. Fried I (1972) Bounds on the extremal eigenvalues of the finite element stiffness and mass matrices and their spectral condition number. J Sound Vib 22:407–418

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The financial support by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delfim Soares Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, D. A novel conjoined space–time formulation for explicit analyses of dynamic models. Engineering with Computers 39, 2109–2123 (2023). https://doi.org/10.1007/s00366-021-01565-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01565-7

Keywords

Navigation