Skip to main content
Log in

The meshless approach for solving 2D variable-order time-fractional advection–diffusion equation arising in anomalous transport

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, with the aim of extending an elegant and straightforward numerical approximation to describe one of the most common physical phenomena has been undertaken. In this regard, the generalization of advection–diffusion equation, namely, the time-fractional advection–diffusion equation with understanding sense variable-order fractional derivative, is taken into consideration. An efficient and accurate approach is relying on the Kansa scheme and finite difference method to provide a mathematical framework to treat the spatial discretization and temporal term, respectively. The meshless collocation approach is utilized for interior scattered points and those on the boundary. Thus, the problem under consideration is reduced to a system of linear algebraic equations. The use of the radial basis function as shape function brings many advantages for proposal numerical method in terms of improved accuracy by setting an appropriate shape parameter and applied for solving high-dimensional models without extra cost. The validity and accuracy of the proposed approach is investigated by four various examples involving three benchmark examples and a practical application of pollution transfer phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Avazzadeh Z, Hosseini VR, Chen W (2014) Radial basis functions and FDM for solving fractional diffusion-wave equation. Iran J Sci Technol Sci 38(3):205–212

    MathSciNet  Google Scholar 

  2. Babaei A, Jafari H, Ahmadi M (2019) A fractional order HIV/AIDS model based on the effect of screening of unaware infectives. Math Methods Appl Sci 42(7):2334–2343

    MathSciNet  MATH  Google Scholar 

  3. Babaei A, Jafari H, Banihashemi S (2020) Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method. J Comput Appl Math 377:112908

    MathSciNet  MATH  Google Scholar 

  4. Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press

    MATH  Google Scholar 

  5. Chanson H (2004) Environmental hydraulics for open channel flows. Elsevier

    Google Scholar 

  6. Chen W, Sun H, Zhang X, Korošak D, Chen W, Chen YQ (2006) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Math Appl 59(4):1754–1758

    MathSciNet  MATH  Google Scholar 

  7. Chen W, Sun H, Zhang X, Korošak D, Chen W, Chen YQ (2006) Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 59(4):923–929

    MATH  Google Scholar 

  8. Chen W, Ye L, Sun H (2010) Fractional diffusion equations by the Kansa method. Comput Math Appl 59(5):1614–1620

    MathSciNet  MATH  Google Scholar 

  9. Cheney EW, Light W (2009) A course in approximation theory, vol 101. American Mathematical Soc

  10. Ciuchi F, Mazzulla A, Scaramuzza N, Lenzi EK, Evangelista LR (2012) Fractional diffusion equation and the electrical impedance: experimental evidence in liquid-crystalline cells. J Phys Chem C 116(15):8773–8777

    Google Scholar 

  11. Coimbra CFM (2003) Mechanics with variable-order differential operators. Ann Phys 12(11–12):692–703

    MathSciNet  MATH  Google Scholar 

  12. Dehghan M (2004) Weighted finite difference techniques for the one-dimensional advection - diffusion equation. Appl Math Comput 147(2):307–319

    MathSciNet  MATH  Google Scholar 

  13. Du M, Wang Z, Hu H (2013) Measuring memory with the order of fractional derivative. Sci Rep 3(1):1–3

    Google Scholar 

  14. El Seblani Y, Shivanian E (2020) New insight into meshless radial point Hermite interpolation through direct and inverse 2-D reaction–diffusion equation. Eng Comput. https://doi.org/10.1007/s00366-020-01020-z

    Article  Google Scholar 

  15. Fasshauer GF (2007) Meshfree approximation methods with MATLAB. World Scientific Publishing Co., Inc

    MATH  Google Scholar 

  16. Flyer N, Fornberg B, Bayona V, Barnett GA (2016) On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J Comput Phys 321:21–38

    MathSciNet  MATH  Google Scholar 

  17. Ganji RM, Jafari H, Nemati S (2020) A new approach for solving integro-differential equations of variable order. J Comput Appl Math 379:112946

    MathSciNet  MATH  Google Scholar 

  18. Ghazal M, Behrouz M (2018) Modelling solute transport in homogeneous and heterogeneous porous media using spatial fractional advection-dispersion equation. Soil Water Res 13(1):18–28

    Google Scholar 

  19. Hilfer R (2000) Applications of fractional calculus in physics, vol 35. World scientific Singapore

    MATH  Google Scholar 

  20. Hosseini VR, Chen W, Avazzadeh Z (2014) Numerical solution of fractional telegraph equation by using radial basis functions. Eng Anal Bound Elem 38:31–39

    MathSciNet  MATH  Google Scholar 

  21. Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur Phys J Plus 130(2):1–21

    Google Scholar 

  22. Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332

    MathSciNet  MATH  Google Scholar 

  23. Hosseini VR, Yousefi F, Zou W-N (2021) The numerical solution of high dimensional variable-order time fractional diffusion equation via the singular boundary method. J Adv Res. https://doi.org/10.1016/j.jare.2020.12.015

    Article  Google Scholar 

  24. Hossein J, Mehdinejadiani B, Baleanu D (2019) Fractional calculus for modeling unconfined groundwater. In: Applications in Engineering, Life and Social Sciences, Part A, pp 119–138

  25. Jafari H, Tajadodi H, Ganji RM (2019) A numerical approach for solving variable order differential equations based on Bernstein polynomials. Comput Math Methods 1(5):e1055

    MathSciNet  Google Scholar 

  26. Jiang Y, Qi H, Xu H, Jiang X (2017) Transient electroosmotic slip flow of fractional Oldroyd-B fluids. Microfluid Nanofluid 21(1):7

    Google Scholar 

  27. Koushki M, Jabbari E, Ahmadinia M (2020) Evaluating RBF methods for solving PDEs using Padua points distribution. Alex Eng J 59(5):2999–3018. https://doi.org/10.1016/j.aej.2020.04.047

    Article  Google Scholar 

  28. Lenzi EK, Zola RS, Ribeiro HV, Vieira DS, Ciuchi F, Mazzulla A, Scaramuzza N, Evangelista LR (2017) Ion motion in electrolytic cells: anomalous diffusion evidences. J Phys Chem B 121(13):2882–2886

    Google Scholar 

  29. Lenzi EK, Lenzi MK, Silva FRGB, Gonçalves G, Rossato R, Zola RS, Evangelista LR (2014) A framework to investigate the immittance responses for finite length-situations: fractional diffusion equation, reaction term, and boundary conditions. J Electroanal Chem 712:82–88

    Google Scholar 

  30. Li Y, Chen YQ, Podlubny I (2009) Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8):1965–1969

    MathSciNet  MATH  Google Scholar 

  31. Liu J, Li X, Hu X (2019) A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation. J Comput Phys 384:222–238

    MathSciNet  MATH  Google Scholar 

  32. Liu X, Sun HG, Zhang Y, Zheng C, Yu Z (2019) Simulating multi-dimensional anomalous diffusion in nonstationary media using variable-order vector fractional-derivative models with Kansa solver. Adv Water Resour 133:103423

    Google Scholar 

  33. Magin RL (2006) Fractional calculus in bioengineering, vol 2. Begell House Redding

    Google Scholar 

  34. Mehdinejadiani B, Jafari H, Baleanu D (2013) Derivation of a fractional Boussinesq equation for modelling unconfined groundwater. Eur Phys J Spec Top 222(8):1805–1812

    Google Scholar 

  35. Mehdinejadiani B, Naseri AA, Jafari H, Ghanbarzadeh A, Baleanu D (2013) A mathematical model for simulation of a water table profile between two parallel subsurface drains using fractional derivatives. Comput Math Appl 66(5):785–794

    MathSciNet  MATH  Google Scholar 

  36. Micchelli CA (1986) Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr Approx 2(1):11–22

    MathSciNet  MATH  Google Scholar 

  37. Pang G, Chen W, Fu Z (2015) Space-fractional advection-dispersion equations by the Kansa method. J Comput Phys 293:280–296

    MathSciNet  MATH  Google Scholar 

  38. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic press

    MATH  Google Scholar 

  39. Powell MJD (1994) The uniform convergence of thin plate spline interpolation in two dimensions. Numer Math 68(1):107–128

    MathSciNet  MATH  Google Scholar 

  40. Samiee M, Akhavan-Safaei A, Zayernouri M (2020) Tempered fractional LES modeling of turbulent flows: a priori analysis. Bull Am Phys Soc. https://meetings.aps.org/Meeting/DFD20/Session/X10.9

  41. Shadabfar M, Cheng L (2020) Probabilistic approach for optimal portfolio selection using a hybrid Monte Carlo simulation and Markowitz model. Alex Eng J 59(5):3381–3393

    Google Scholar 

  42. Shivanian E (2015) Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    MathSciNet  MATH  Google Scholar 

  43. Shivanian E (2020) Pseudospectral meshless radial point hermit interpolation versus pseudospectral meshless radial point interpolation. Int J Comput Methods 17(07):1950023

    MathSciNet  MATH  Google Scholar 

  44. Shivanian E, Jafarabadi A (2018) The spectral meshless radial point interpolation method for solving an inverse source problem of the time-fractional diffusion equation. Appl Numer Math 129:1–25

    MathSciNet  MATH  Google Scholar 

  45. Sun HG, Chen W, Chen YQ (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A Stat Mech Appl 388(21):4586–4592

    Google Scholar 

  46. Sun HG, Meerschaert MM, Zhang Y, Zhu J, Chen W (2013) A fractal Richards’ equation to capture the non-Boltzmann scaling of water transport in unsaturated media. Adv Water Resour 52:292–295

    Google Scholar 

  47. Tarasov VE, Tarasova VV (2016) Long and short memory in economics: fractional-order difference and differentiation. arXiv preprint arXiv:1612.07903

  48. Tarasova VV, Tarasov VE (2018) Concept of dynamic memory in economics. Commun Nonlinear Sci Numer Simul 55:127–145

    MathSciNet  MATH  Google Scholar 

  49. Tayebi A, Shekari Y, Heydari MH (2017) A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation. J Comput Phys 340:655–669

    MathSciNet  MATH  Google Scholar 

  50. Tuan NH, Nemati S, Ganji RM, Jafari H (2020) Numerical solution of multi-variable order fractional integro-differential equations using the Bernstein polynomials. Eng Comput. https://doi.org/10.1007/s00366-020-01142-4

    Article  Google Scholar 

  51. Wang L, Zheng H, Lu X, Shi L (2019) A Petrov-Galerkin finite element interface method for interface problems with Bloch-periodic boundary conditions and its application in phononic crystals. J Comput Phys 393:117–138

    MathSciNet  MATH  Google Scholar 

  52. Wang X, Qi H, Yu B, Xiong Z, Xu H (2017) Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids. Commun Nonlinear Sci Numer Simul 50:77–87

    MathSciNet  MATH  Google Scholar 

  53. Yan Z-Z, Wei C-Q, Zheng H, Zhang C (2016) Phononic band structures and stability analysis using radial basis function method with consideration of different interface models. Phys B Condens Matter 489:1–11

    Google Scholar 

  54. Yao G, Chen C-S, Zheng H (2017) A modified method of approximate particular solutions for solving linear and nonlinear PDEs. Numer Methods Partial Differ Equ 33(6):1839–1858

    MathSciNet  MATH  Google Scholar 

  55. Zayernouri M, Karniadakis GE (2015) Fractional spectral collocation methods for linear and nonlinear variable order FPDEs. J Comput Phys 293:312–338

    MathSciNet  MATH  Google Scholar 

  56. Zheng H, Zhang Ch, Yang Z (2020) A local radial basis function collocation method for band structure computation of 3D phononic crystals. Appl Math Modell 77:1954–1964

    MathSciNet  MATH  Google Scholar 

  57. Zheng H, Yang Z, Zhang Ch, Tyrer M (2018) A local radial basis function collocation method for band structure computation of phononic crystals with scatterers of arbitrary geometry. Appl Math Modell 60:447–459

    MathSciNet  MATH  Google Scholar 

  58. Zheng H, Zhang C, Wang Y, Sladek J, Sladek V (2016) A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals. J Comput Phys 305:997–1014

    MathSciNet  MATH  Google Scholar 

  59. Zheng H, Zhou C, Yan DJ, Wang YS, Zhang C (2020) A meshless collocation method for band structure simulation of nanoscale phononic crystals based on nonlocal elasticity theory. J Comput Phys 408:109268

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

“This work is supported by the National Science Foundation of China (NSFC), Grant No. 11962017”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-N. Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, V.R., Koushki, M. & Zou, WN. The meshless approach for solving 2D variable-order time-fractional advection–diffusion equation arising in anomalous transport. Engineering with Computers 38 (Suppl 3), 2289–2307 (2022). https://doi.org/10.1007/s00366-021-01379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01379-7

Keywords

Navigation