Skip to main content
Log in

A wavelet approach for the variable-order fractional model of ultra-short pulsed laser therapy

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, the ultra-short pulsed laser treatment is numerically simulated for a focused laser beam applied to a cylindrical domain. To do so, the general form of the variable-order fractional-order, dual-phase lag bioheat transfer equation is implemented. To determine the major affecting parameters, the dimensionless form of the heat equation is derived and solved numerically. An efficient method based on the 2D Legendre wavelets is developed to provide a numerical solution for this variable-order time fractional model. The man advantage of the proposed algorithm is that it converts the solution of the problem into solution of a system of algebraic equations. The validity of the formulated method is investigated through one numerical example. The effect of several operational and thermo-physical properties including the phase lag time, fractional order, and the duration of active laser beam in each on/off cycle on the thermal field and heat penetration depth is examined. According to the results, it is concluded that by increasing the fractional order from 0.1 to 0.9, 65.1% increase in the penetration length occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mao YD, Xu MT (2015) Non-Fourier heat conduction in a thin gold film heated by an ultra-fast-laser. Sci China Technol Sci 58:638–649

    Article  Google Scholar 

  2. Khafaji M, Zamani M, Golizadeh M, Bavi O (2019) Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 11:335–352

    Article  Google Scholar 

  3. Zhang Y, Tzou DY, Chen JK (2009) Micro- and nanoscale heat transfer in femtosecond laser processing of metals. In: Barret P, Palmer M (eds) High-power and femtosecond lasers: properties, materials and applications, 1st edn. Nova Science Publisher, New York, pp 159–206

    Google Scholar 

  4. Niemz M (1996) Laser–tissue interactions. Springer, Berlin

    Book  Google Scholar 

  5. Cui Y, Li YH, Xing YF (2016) One-dimensional thermal analysis of the flexible electronic devices integrated with human skin. Micromachines 7(11):210

    Article  Google Scholar 

  6. Roohi R, Emdad H, Jafarpur K (2019) A comprehensive study and optimization of magnetic nanoparticle drug delivery to cancerous tissues via external magnetic field. J Test Eval 47(2):681–703

    Article  Google Scholar 

  7. Roohi R, Emdad H, Jafarpur K, Mahmoudi M (2020) Determination of magnetic nanoparticles injection characteristics for optimal hyperthermia treatment of an arbitrary cancerous cells distribution. J Test Eval 48(2):905–921

    Article  Google Scholar 

  8. Kumar S, Damor RS, Shukla AK (2018) Numerical study on thermal therapy of triple layer skin tissue using fractional bioheat model. Int J Biomath 11(4):1850052

    Article  MathSciNet  Google Scholar 

  9. Ali F, Imtiaz A, Khan I, Sheikh NA (2018) Flow of magnetic particles in blood with isothermal heating: a fractional model for two-phase flow. J Magn Magn Mater 456(15):413–422

    Article  Google Scholar 

  10. Roohi R, Heydari MH, Bavi O, Emdad H (2021) Chebyshev polynomials for generalized Couette flow of fractional Jeffrey nanofluid subjected to several thermochemical effects. Eng Comput 37:579–595

    Article  Google Scholar 

  11. Roohi R, Heydari MH, Aslami M, Mahmoudi MR (2018) A comprehensive numerical study of space-time fractional bioheat equation using fractional-order Legendre functions. Eur Phys J Plus 133:412–427

    Article  Google Scholar 

  12. Cattaneo C (1948) Sulla conduzione de calore. Atti del seminario matematico e fisico dell’universit’ a di modena 3:3–21

    MathSciNet  Google Scholar 

  13. Vernotte P (1958) Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes rendus de l’Academie des Sciences 246:3154–3155

    MATH  Google Scholar 

  14. Hosseininia M, Heydari MH, Roohi R, Avvazzadeh Z (2019) A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation. J Comput Phys 395:1–18

    Article  MathSciNet  Google Scholar 

  15. Ma J, Yang X, Sun Y, Yu J (2019) Theoretical analysis of nanoshell-assisted thermal treatment for subcutaneous tumor. J Mech Behav Biomed Mater 93:70–80

    Article  Google Scholar 

  16. Majchrzak E, Mochnacki B (2018) Dual-phase lag model of thermal processes in a multi-layered microdomain subjected to a strong laser pulse using the implicit scheme of fdm. Int J Therm Sci 133:240–251

    Article  Google Scholar 

  17. Atangana A, Gómez-Aguilar JF (2018) Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur Phys J Plus 133:166

    Article  Google Scholar 

  18. Atangana A, Gómez-Aguilar JF (2018) Fractional derivatives with no-index law property: application to chaos and statistics. Chaos Solitons Fractals 114:516–535

    Article  MathSciNet  Google Scholar 

  19. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  20. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York

    MATH  Google Scholar 

  21. Scherer R, Kalla SL, Boyadjiev L, Al-Saqabi B (2008) Numerical treatment of fractional heat equations. Appl Numer Math 58:1212–1223

    Article  MathSciNet  Google Scholar 

  22. Langlands TAM, Henry BI (2005) The accuracy and stability of an implicit solution method for the fractional diffusion equation. J Comput Phys 205(2):719–736

    Article  MathSciNet  Google Scholar 

  23. Sun HG, Chen W, Wei H, Chen YQ (2011) A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur Phys J Spec Top 193:185–192

    Article  Google Scholar 

  24. Li XY, Wu BY (2015) A numerical technique for variable fractional functional boundary value problems. Appl Math Lett 43:108–113

    Article  MathSciNet  Google Scholar 

  25. Solís-Pérez JE, Gómez-Aguilar JF, Atangana A (2018) Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag–Leffler laws. Chaos Solitons Fractals 114:175–185

    Article  MathSciNet  Google Scholar 

  26. Heydari MH, Hooshmandasl MR, Mohammadi F (2014) Two-dimensional legendre wavelets for solving time-fractional telegraph equation. Adv Appl Math Mech 6(2):247–260

    Article  MathSciNet  Google Scholar 

  27. Heydari MH, Hooshmandasl MR, Maalek Ghaini FM, Cattani C (2015) Wavelets method for the time fractional diffusion-wave equation. Phys Lett A 379:71–76

    Article  MathSciNet  Google Scholar 

  28. Heydari MH (2016) Wavelets Galerkin method for the fractional subdiffusion equation. J Comput Nonlinear Dyn 11(6):061014–4

    Article  Google Scholar 

  29. Heydari MH, Avazzadeh Z (2018) Legendre wavelets optimization method for variable-order fractional Poisson equation. Chaos Solitons Fractals 112:180–190

    Article  MathSciNet  Google Scholar 

  30. Heydari MH, Avazzadeh Z (2018) A new wavelet method for variable-order fractional optimal control problems. Asian J Control 20(5):1–14

    Article  MathSciNet  Google Scholar 

  31. Hosseininia M, Heydari MH, Maalek Ghaini FM, Avazzadeh Z (2019) A wavelet method to solve nonlinear variable-order time fractional 2D Klein–Gordon equation. Comput Math Appl 78(12):3713–3730

    Article  MathSciNet  Google Scholar 

  32. Hosseininia M, heydari MH, (2019) Legendre wavelets for the numerical solution of nonlinear variable-order time fractional 2D reaction-diffusion equation involving Mittag-Leffler non-singular kernel. Chaos Solitons Fractals 127:400–407

    Article  MathSciNet  Google Scholar 

  33. Shen S, Liu F, Chen J, Turner I, Anh V (2012) Numerical techniques for the variable order time fractional diffusion equation. Appl Math Comput 218:10861–10870

    MathSciNet  MATH  Google Scholar 

  34. Chen Y, Liu L, Li B, Sun Y (2014) Numerical solution for the variable order linear cable equation with Bernstein polynomials. Appl Math Comput 238:329–341

    MathSciNet  MATH  Google Scholar 

  35. Hooshmand P, Moradi A, Khezry B (2015) Bioheat transfer analysis of biological tissues induced by laser irradiation. Int J Therm Sci 90:214–223

    Article  Google Scholar 

  36. Waynant R (2002) Laers in medicine. CRC Press LLC, Boca Raton

    Google Scholar 

  37. Canuto C, Hussaini M, Quarteroni A, Zang T (1998) Spectral methods in fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  38. Yin F, Song J, Lu F (2014) A coupled method of Laplace transform and Legendre wavelets for nonlinear Klein–Gordon equations. Math Methods Appl Sci 37:781–791

    Article  MathSciNet  Google Scholar 

  39. Hosseininia M, Heydari MH, Maalek Ghaini FM, Avazzadeh Z (2018) Two-dimensional Legendre wavelets for solving variable-order fractional nonlinear advection–diffusion equation with variable coefficients. Int J Nonlinear Sci Numer Simul 19:7–8

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Heydari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohi, R., Hosseininia, M. & Heydari, M.H. A wavelet approach for the variable-order fractional model of ultra-short pulsed laser therapy. Engineering with Computers 38 (Suppl 3), 2229–2244 (2022). https://doi.org/10.1007/s00366-021-01367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01367-x

Keywords

Navigation