Skip to main content
Log in

Jacobi wavelet collocation method for the modified Camassa–Holm and Degasperis–Procesi equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Matrices representations of integrations of wavelets have a major role to obtain approximate solutions of integral, differential and integro-differential equations. In the present work, operational matrix representation of rth integration of Jacobi wavelets is introduced and to find these operational matrices, all details of the processes are demonstrated for the first time. Error analysis of offered method is also investigated in present study. In the planned method, approximate solutions are constructed with the truncated Jacobi wavelets series. Approximate solutions of the modified Camassa–Holm equation and Degasperis–Procesi equation linearized using quasilinearization technique are obtained by presented method. Applicability and accuracy of presented method is demonstrated by examples. The proposed method is also convergent even when a minor number of grid points. The numerical results obtained by offered technique are compatible with those in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gu JS, Jiang WS (1996) The Haar wavelets operational matrix of integration. Int J Syst Sci 27(7):623–628

    MATH  Google Scholar 

  2. Lepik U (2007) Numerical solution of evolution equations by the Haar wavelet method. Appl Math Comput 185:695–704

    MathSciNet  MATH  Google Scholar 

  3. Hariharan G, Kannan K, Sharma KR (2009) Haar wavelet method for solving Fisher’s equation. Appl Math Comput 211:284–292

    MathSciNet  MATH  Google Scholar 

  4. Hariharan G, Kannan K (2010) Haar wavelet method for solving FitzHugh–Nagumo equation. Int J Math Stat Sci 2(2):59–63

    Google Scholar 

  5. Hariharan G, Kannan K (2010) A comparative study of a Haar wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int J Comput Methods Eng Sci Mech 11(4):173–184

    MathSciNet  MATH  Google Scholar 

  6. Hariharan G, Kannan K (2010) Haar wavelet method for solving nonlinear parabolic equations. J Math Chem 48(4):1044–1061

    MathSciNet  MATH  Google Scholar 

  7. Geng W, Chen Y, Li Y, Wang D (2011) Wavelet method for nonlinear partial differential equations of fractional order. Comput Inf Sci 4(5):28–35

    Google Scholar 

  8. Kaur H, Mittal RC, Mishra V (2011) Haar wavelet quasilinearization approach for solving nonlinear boundary value problems. Am J Comput Math 1:176–182

    Google Scholar 

  9. Çelik İ (2012) Haar wavelet method for solving generalized Burgers–Huxley equation. Arab J Math Sci 18:25–37

    MathSciNet  MATH  Google Scholar 

  10. Çelik İ (2013) Haar wavelet approximation for magnetohydrodynamic flow equations. Appl Math Model 37:3894–3902

    MathSciNet  MATH  Google Scholar 

  11. Razzaghi M, Yousefi S (2000) Legendre wavelets direct method for variational problems. Math Comput Simul 53:185–192

    MathSciNet  Google Scholar 

  12. Razzaghi M, Yousefi S (2001) Legendre wavelets operational matrix of integration. Int J Syst Sci 32(4):495–502

    MathSciNet  MATH  Google Scholar 

  13. Maleknejad K, Kajani MT, Mahmoudi Y (2003) Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 32(9/10):1530–1539

    MATH  Google Scholar 

  14. Kajani MT, Vencheh AH (2004) Solving linear integro-differential equation with Legendre wavelet. Int J Comput Math 81(6):719–726

    MathSciNet  MATH  Google Scholar 

  15. Heydari MH, Hooshmandasl MR, Ghaini FMM, Fereidouni F (2013) Two-dimensional Legendre wavelets for solving fractional Poisson equation with Dirichlet boundary conditions. Eng Anal Bound Elem 37:1331–1338

    MathSciNet  MATH  Google Scholar 

  16. Hariharan G (2014) An efficient wavelet analysis method to film-pore diffusion model arising in mathematical chemistry. J Membr Biol 247(4):339–343

    Google Scholar 

  17. Babolian E, Fattahzadeh F (2007) Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl Math Comput 188:417–426

    MathSciNet  MATH  Google Scholar 

  18. Babolian E, Fattahzadeh F (2007) Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration. Appl Math Comput 188(1):1016–1022

    MathSciNet  MATH  Google Scholar 

  19. Kajania MT, Vencheha AH, Ghasemib M (2009) The Chebyshev wavelets operational matrix of integration and product operation matrix. Int J Comput Math 86(7):1118–1125

    MathSciNet  Google Scholar 

  20. Adibi H, Assari P (2010) Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind. Math Probl Eng 2010:17 ((Article ID 138408))

    MathSciNet  MATH  Google Scholar 

  21. Wang YX, Fan QB (2012) The second kind Chebyshev wavelet method for solving fractional differential equations. Appl Math Comput 218:8592–8601

    MathSciNet  MATH  Google Scholar 

  22. Hooshmandasl MR, Heydari MH, Ghaini FMM (2012) Numerical solution of the one dimensional heat equation by using Chebyshev wavelets method. Appl Comput Math 1(6):1–7

    Google Scholar 

  23. Heydari MH, Hooshmandasl MR, Ghaini FMM, Li M (2013) Chebyshev wavelets method for solution of nonlinear fractional integrodifferential equations in a large interval. Adv Math Phys 2013:12 ((Article ID 482083))

    MathSciNet  MATH  Google Scholar 

  24. Yang C, Hou J (2013) Chebyshev wavelets method for solving Bratu’s problem. Bound Value Probl 2013:142

    MathSciNet  MATH  Google Scholar 

  25. Hariharan G (2014) An efficient wavelet based approximation method to water quality assessment model in a uniform channel. Ain Shams Eng J 5(2):525–532

    Google Scholar 

  26. Çelik İ (2013) Numerical solution of differential equations by using Chebyshev wavelet collocation method. Cankaya Univ J Sci Eng 10(2):169–184

    Google Scholar 

  27. Çelik İ (2016) Chebyshev Wavelet collocation method for solving generalized Burgers–Huxley equation. Math Methods Appl Sci 39:366–377

    MathSciNet  MATH  Google Scholar 

  28. Çelik İ (2018) Free vibration of non-uniform Euler–Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method. Appl Math Model 54:268–280

    MathSciNet  MATH  Google Scholar 

  29. Pathak A, Singh RK, Mandal BN (2014) Solution of Abel’s integral equation by using Gegenbauer wavelets. Investig Math Sci 4(1):43–52

    MATH  Google Scholar 

  30. Abd-Elhameed WM, Youssri YH (2014) New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. In: Abstract and applied analysis, 2014; Hindawi

  31. Abd-Elhameed WM, Youssri YH, Doha EH (2014) New solutions for singular Lane–Emden equations arising in astrophysics based on shifted ultraspherical operational matrices of derivatives. Comput Methods Differ Equ 2(3):171–185

    MathSciNet  MATH  Google Scholar 

  32. Abd-Elhameed WM, Youssri YH (2015) New spectral solutions of multi-term fractional order initial value problems with error analysis. Comput Model Eng Sci 105(5):375–398

    Google Scholar 

  33. Rehman M, Saeed U (2015) Gegenbauer wavelets operational matrix method for fractional differential equations. J Korean Math Soc 52(5):1069–1096

    MathSciNet  MATH  Google Scholar 

  34. Youssri YH, Abd-Elhameed WM, Doha EH (2015) Ultraspherical wavelets method for solving Lane–Emden type equations. Rom J Phys 60(9):1298–1314

    Google Scholar 

  35. Youssri YH, Abd-Elhameed WM, Doha EH (2015) Accurate spectral solutions of first-and second-order initial value problems by the ultraspherical wavelets-Gauss collocation method. Appl Appl Math Int J 10(2):835–851

    MathSciNet  MATH  Google Scholar 

  36. Doha EH, Abd-Elhameed WM, Youssri YH (2016) New ultraspherical wavelets collocation method for solving 2nth-order initial and boundary value problems. J Egypt Math Soc 24(2):319–327

    MathSciNet  MATH  Google Scholar 

  37. Çelik İ (2018) Generalization of Gegenbauer wavelet collocation method to the generalized Kuramoto–Sivashinsky equation. Int J Appl Comput Math 4(5):111

    MathSciNet  MATH  Google Scholar 

  38. Çelik İ (2021) Squeezing flow of nanofluids of Cu–water and kerosene between two parallel plates by Gegenbauer wavelet collocation method. Eng Comput. 37:251–264

  39. Çelik İ (2020) Gegenbauer wavelet collocation method for the extended Fisher-Kolmogorov equation in two dimensions. Math Method Appl Sci 43(8):5615–5628. https://doi.org/10.1002/mma.6300

    Article  MathSciNet  MATH  Google Scholar 

  40. Wazwaz AM (2006) Solitary wave solutions for modified forms of Degasperis–Procesi and Camassa–Holm Equations. Phys Lett A 352:500–504

    MathSciNet  MATH  Google Scholar 

  41. Mandelzweig VB, Tabakin F (2001) Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs. Comput Phys Commun 141(2):268–281

    MathSciNet  MATH  Google Scholar 

  42. Luke YL (1969) The special functions and their approximations, vol I. Academic Press, New York

    MATH  Google Scholar 

  43. Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia

    MATH  Google Scholar 

  44. Yildirim A (2010) Variational iteration method for modified Camassa–Holm and Degasperis-Procesi equations. Int J Numer Methods Biomed Eng 26:266–272

    MathSciNet  MATH  Google Scholar 

  45. Ganji DD, Sadeghi EMM, Rahmat MG (2008) Modified forms of Degaperis–Procesi and Camassa–Holm equations solved by Adomian’s decomposition method and comparison with HPM and exact solution. Acta Applicandae Mathematicae 104:303–311

    MathSciNet  MATH  Google Scholar 

  46. Zhang B, Li S, Liu Z (2008) Homotopy perturbation method for modified Camassa–Holm and Degaperis–Procesi equations. Phys Lett A 372:1867–1872

    MathSciNet  MATH  Google Scholar 

  47. Wasim I, Abbas M, Iqbal MK (2018) Numerical solution of modified forms of Camassa–Holm and Degasperis–Procesi equations via quartic B-spline collocation method. Commun Math Appl 9:393–409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Çelik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, İ. Jacobi wavelet collocation method for the modified Camassa–Holm and Degasperis–Procesi equations. Engineering with Computers 38 (Suppl 3), 2271–2287 (2022). https://doi.org/10.1007/s00366-020-01279-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01279-2

Keywords

Navigation