Skip to main content
Log in

Chebyshev wavelet collocation method for magnetohydrodynamic flow equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study proposes Chebyshev wavelet collocation method for partial differential equation and applies to solve magnetohydrodynamic (MHD) flow equations in a rectangular duct in the presence of transverse external oblique magnetic field. Approximate solutions of velocity and induced magnetic field are obtained for steady‐state, fully developed, incompressible flow for a conducting fluid inside the duct. Numerical results of the MHD flow problem show that the accuracy of proposed method is quite good even in the case of a small number of grid points. The results for velocity and induced magnetic field are visualized in terms of graphics for values of Hartmann number Ha ≤ 1000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Singh B, Lal J (1978) Magnetohydrodynamic axial flow in a triangular pipe under transverse magnetic field. Indian J Pure Appl Math 9:101–115

    MathSciNet  MATH  Google Scholar 

  2. Singh B, Lal J (1979) MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle. Indian J Technol 17:184–189

    MATH  Google Scholar 

  3. Singh B, Lal J (1984) Finite element method of MHD channel flow with arbitrary wall conductivity. J Math Phys Sci 18:501–516

    MATH  Google Scholar 

  4. Gardner LRT, Gardner GA (1995) A two dimensional bi-cubic B-spline finite element: used in a study of MHD-duct flow. Comput Methods Appl Mech Eng 124(4):365–375

    Google Scholar 

  5. Tezer-Sezgin M, Köksal S (1989) FEM for solving MHD flow in a rectangular duct. Int J Numer Methods Eng 28(2):445–459

    MATH  Google Scholar 

  6. Demendy Z, Nagy T (1997) A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers. Acta Mech 123(1–4):135–149

    MATH  Google Scholar 

  7. Barrett KE (2001) Duct flow with a transverse magnetic field at high Hartmann numbers. Int J Numer Methods Eng 50(8):1893–1906

    MATH  Google Scholar 

  8. Neslitürk AI, Tezer-Sezgin M (2005) The finite element method for MHD flow at high Hartmann numbers. Comput Methods Appl Mech Eng 194(9–11):1201–1224

    MathSciNet  MATH  Google Scholar 

  9. Neslitürk AI, Tezer-Sezgin M (2006) Finite element method solution of electrically driven magnetohydrodynamic flow. J Comput Appl Math 192(2):339–352

    MathSciNet  MATH  Google Scholar 

  10. Tezer-Sezgin M (2004) Solution of magnetohydrodynamic flow in a rectangular duct by differential quadrature method. Comput Fluids 33(4):533–547

    MATH  Google Scholar 

  11. Singh B, Agarwal PK (1984) Numerical solution of a singular integral equation appearing in magnetohydrodynamics. Zeitschrift für angewandte Mathematik und Physik ZAMP 35(6):760–770

    MATH  Google Scholar 

  12. Tezer-Sezgin M (1994) BEM solution of MHD flow in a rectangular duct. Int J Numer Methods Fluids 18(10):937–952

    MATH  Google Scholar 

  13. Liu HW, Zhu SP (2002) The dual reciprocity boundary element method for magnetohydrodynamic channel flows. Anziam J 44(2):305–322

    MathSciNet  MATH  Google Scholar 

  14. Tezer-Sezgin M, Aydin SH (2002) Dual reciprocity boundary element method for magnetohydrodynamic flow using radial basis functions. Int J Comput Fluid Dyn 16(1):49–63

    MathSciNet  MATH  Google Scholar 

  15. Carabineanu A, Dinu A, Oprea I (1995) The application of the boundary element method to the magnetohydrodynamic duct flow. Zeitschrift für angewandte Mathematik und Physik ZAMP 46(6):971–981

    MathSciNet  MATH  Google Scholar 

  16. Bozkaya C, Tezer-Sezgin M (2006) Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme. Int J Numer Methods Fluids 51(5):567–584

    MathSciNet  MATH  Google Scholar 

  17. Bozkaya N, Tezer-Sezgin M (2008) Time-domain BEM solution of convection–diffusion-type MHD equations. Int J Numer Methods Fluids 56(11):1969–1991

    MathSciNet  MATH  Google Scholar 

  18. Tezer-Sezgin M, Aydın SH (2006) Solution of magnetohydrodynamic flow problems using the boundary element method. Eng Anal Boundary Elem 30(5):411–418

    MATH  Google Scholar 

  19. Bozkaya C, Tezer-Sezgin M (2007) Fundamental solution for coupled magnetohydrodynamic flow equations. J Comput Appl Math 203(1):125–144

    MathSciNet  MATH  Google Scholar 

  20. Çelik İ (2011) Solution of magnetohydrodynamic flow in a rectangular duct by Chebyshev collocation method. Int J Numer Methods Fluids 66(10):1325–1340

    MathSciNet  MATH  Google Scholar 

  21. Çelik İ (2012) Solution of magneto-hydrodynamic flow in a rectangular duct by Chebyshev polynomial method. Appl Math 2(3):58–65

    Google Scholar 

  22. Çelik İ (2013) Haar wavelet approximation for magnetohydrodynamic flow equations. Appl Math Model 37(6):3894–3902

    MathSciNet  MATH  Google Scholar 

  23. Hwang C, Shih YP (1983) Laguerre series direct method for variational problems. J Optim Theory Appl 39(1):143–149

    MathSciNet  MATH  Google Scholar 

  24. Chang RY, Wang ML (1983) Shifted Legendre direct method for variational problems. J Optim Theory Appl 39(2):299–307

    MathSciNet  MATH  Google Scholar 

  25. Horng IR, Chou JH (1985) Shifted Chebyshev direct method for solving variational problems. Int J Syst Sci 16(7):855–861

    MathSciNet  MATH  Google Scholar 

  26. Razzaghi M, Razzaghi M (1988) Fourier series direct method for variational problems. Int J Control 48(3):887–895

    MathSciNet  MATH  Google Scholar 

  27. Guf JS, Jiang WS (1996) The Haar wavelets operational matrix of integration. Int J Syst Sci 27(7):623–628

    MATH  Google Scholar 

  28. Chen CF, Hsiao CH (1997) Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc Control Theory Appl 144(1):87–94

    MathSciNet  MATH  Google Scholar 

  29. Maleknejad K, Tavassoli Kajani M, Mahmoudi Y (2003) Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 32(9–10):1530–1539

    MATH  Google Scholar 

  30. Razzaghi M, Yousefi S (2000) Legendre wavelets direct method for variational problems. Math Comput Simul 53(3):185–192

    MathSciNet  Google Scholar 

  31. Kajani MT, Vencheh AH, Ghasemi M (2009) The Chebyshev wavelets operational matrix of integration and product operation matrix. Int J Comput Math 86(7):1118–1125

    MathSciNet  MATH  Google Scholar 

  32. Babolian E, Fattahzadeh F (2007) Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. Appl Math Comput 188(1):417–426

    MathSciNet  MATH  Google Scholar 

  33. Babolian E, Fattahzadeh F (2007) Numerical computation method in solving integral equations by using Chebyshev wavelet operational matrix of integration. Appl Math Comput 188(1):1016–1022

    MathSciNet  MATH  Google Scholar 

  34. Adibi H, Assari P (2010) Chebyshev wavelet method for numerical solution of Fredholm integral equations of the first kind. Math Probl Eng. https://doi.org/10.1155/2010/138408

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang C, Hou J (2013) Chebyshev wavelets method for solving Bratu’s problem. Bound Value Probl 1:142

    MathSciNet  MATH  Google Scholar 

  36. Sohrabi S (2011) Comparison Chebyshev wavelets method with BPFs method for solving Abel’s integral equation. Ain Shams Eng J 2(3–4):249–254

    Google Scholar 

  37. Ali A, Iqbal MA, Mohyud-Din ST (2013) Chebyshev wavelets method for delay differential equations. Int J Modern Math Sci 8(2):102–110

    Google Scholar 

  38. Çelik İ (2013) Numerical solution of differential equations by using Chebyshev wavelet collocation method. Çankaya Univ J Sci Eng 10(2):3934–3946

    Google Scholar 

  39. Çelik İ (2016) Chebyshev Wavelet collocation method for solving generalized Burgers-Huxley equation. Math Methods Appl Sci 39(3):366–377

    MathSciNet  MATH  Google Scholar 

  40. Çelik İ (2018) Free vibration of non-uniform Euler-Bernoulli beam under various supporting conditions using Chebyshev wavelet collocation method. Appl Math Model 54:268–280

    MathSciNet  MATH  Google Scholar 

  41. Daubechies I (1992) Ten lectures on wavelets, vol 61. Siam, Philadelphia

    MATH  Google Scholar 

  42. Fox L, Parker IB (1968) Chebyshev polynomials in numerical analysis. Oxford University Press, London

    MATH  Google Scholar 

  43. Çelik İ (2018) Generalization of Chebyshev wavelet collocation method to the rth-order differential equations. Commun Math Model Appl 3(2):31–47

    Google Scholar 

  44. Dragos L (1975) Magnetofluid dynamics. Abacus Press, Preston

    Google Scholar 

  45. Shercliff JA (1953) Steady motion conducting fluids in pipes under transverse magnetic fields. Proc Camb Philos Soc 49:136–144

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Çelik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karataş, A.S., Çelik, İ. Chebyshev wavelet collocation method for magnetohydrodynamic flow equations. Engineering with Computers 38 (Suppl 3), 2175–2187 (2022). https://doi.org/10.1007/s00366-020-01251-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01251-0

Keywords

Navigation