Skip to main content
Log in

Numerical solution of fractal-fractional Mittag–Leffler differential equations with variable-order using artificial neural networks

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this work, a methodology based on a neural network to solve fractal-fractional differential equations with a nonsingular and nonlocal kernel is proposed, the neural network is optimized by the Levenberg–Marquardt algorithm. For evaluating the neural network, different chaotic oscillators of variable order are solved and compared with algorithms of numeric approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27(3):201–210

    Article  MATH  Google Scholar 

  2. Meral FC, Royston TJ, Magin R (2010) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15(4):939–945

    Article  MathSciNet  MATH  Google Scholar 

  3. Su X, Xu W, Chen W, Yang H (2020) Fractional creep and relaxation models of viscoelastic materials via a non-Newtonian time-varying viscosity: physical interpretation. Mech Mater 140:103222

    Article  Google Scholar 

  4. Bouharguane A, Seloula N (2020) The local discontinuous Galerkin method for convection-diffusion-fractional anti-diffusion equations. Appl Numer Math 148:61–78

    Article  MathSciNet  MATH  Google Scholar 

  5. Arqub OA, Al-Smadi M (2020) An adaptive numerical approach for the solutions of fractional advection-diffusion and dispersion equations in singular case under Riesz’s derivative operator. Phys A 540:123257

    Article  MathSciNet  MATH  Google Scholar 

  6. Bai ZZ, Lu KY (2020) On regularized Hermitian splitting iteration methods for solving discretized almost isotropic spatial fractional diffusion equations. Numer Linear Algebra Appl 27(1):e2274

    Article  MathSciNet  MATH  Google Scholar 

  7. Engheta N (1996) On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans Antennas Propag 44(4):554–566

    Article  MathSciNet  MATH  Google Scholar 

  8. Gómez F, Bernal J, Rosales J, Cordova T (2019) Modeling and simulation of equivalent circuits in description of biological systems—a fractional calculus approach. J Electr Bioimpedance 3(1):2–11

    Article  Google Scholar 

  9. Stefański TP, Gulgowski J (2020) Signal propagation in electromagnetic media described by fractional-order models. Commun Nonlinear Sci Numer Simul 82:105029

    Article  MathSciNet  MATH  Google Scholar 

  10. Gómez-Aguilar JF, Rosales-García JJ, Bernal-Alvarado JJ, Córdova-Fraga T, Guzmán-Cabrera R (2012) Fractional mechanical oscillators. Rev Mexicana física 58(4):348–352

    Google Scholar 

  11. Grzesikiewicz W, Wakulicz A, Zbiciak A (2013) Non-linear problems of fractional calculus in modeling of mechanical systems. Int J Mech Sci 70:90–98

    Article  Google Scholar 

  12. Jiménez F, Ober-Blöbaum S (2019) Fractional damping through restricted calculus of variations. arXiv:1905.05608

  13. Coelho RM, Neto JP, Valério D, Vinga S (2020) Dynamic biochemical and cellular models of bone physiology: integrating remodeling processes, tumor growth, and therapy. The computational mechanics of bone tissue. Springer, Cham, pp 95–128

    Google Scholar 

  14. Yépez-Martínez H, Gómez-Aguilar JF (2020) Laplace variational iteration method for modified fractional derivatives with nonsingular kernel. J Archive 2020:6

    Google Scholar 

  15. Goswami P, Alqahtani RT (2016) On the solution of local fractional differential equations using local fractional Laplace variational iteration method. Math Probl Eng 2016:2

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu GC, Baleanu D (2013) Variational iteration method for fractional calculus-a universal approach by Laplace transform. Adv Differ Equ 2013(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  17. Inokuti M, Sekine H, Mura T (1978) General use of the Lagrange multiplier in nonlinear mathematical physics. Variation Method Mech Solids 33(5):156–162

    Google Scholar 

  18. Morales-Delgado VF, Gómez-Aguilar JF, Yépez-Martínez H, Baleanu D, Escobar-Jimenez RF, Olivares-Peregrino VH (2016) Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Adv Differ Equ 2016(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  19. Ghorbani A, Saberi-Nadjafi J (2008) Exact solutions for nonlinear integral equations by a modified homotopy perturbation method. Comput Math Appl 56(4):1032–1039

    Article  MathSciNet  MATH  Google Scholar 

  20. Filobello-Nino U, Vázquez-Leal H, Khan Y, Pereyra-Díaz D, Pérez-Sesma A, Díaz-Sánchez A (2014) Modified nonlinearities distribution homotopy perturbation method as a tool to find power series solutions to ordinary differential equations. Nova Scientia 6(12):13–38

    Article  Google Scholar 

  21. Cuce E, Cuce PM (2015) A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins. Energy Convers Manage 93:92–99

    Article  MATH  Google Scholar 

  22. Saad KM, AL-Shareef EH, Alomari AK, Baleanu D, Gómez-Aguilar JF (2020) On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries-Burger’s equations using homotopy analysis transform method. Chin J Phys 63:149–162

    Article  MathSciNet  Google Scholar 

  23. Murio DA (2009) Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional IHCP. Inverse Probl Sci Eng 17(2):229–243

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang S (2009) Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives. Nonlinear Anal Theory Methods Appl 71(5–6):2087–2093

    Article  MathSciNet  MATH  Google Scholar 

  25. Baleanu D, Agrawal OP (2006) Fractional Hamilton formalism within Caputo’s derivative. Czech J Phys 56(10–11):1087–1092

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang XJ, Srivastava HM, Machado JA (2015) A new fractional derivative without singular kernel: application to the modelling of the steady heat flow. arXiv:1601.01623

  27. Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular Kernel. Theory and application to heat transfer model. Therm Sci 20(2):763–769

    Article  Google Scholar 

  28. Yang XJ (2016) Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems. arXiv:1612.03202

  29. Ghanbari B, Gómez-Aguilar JF (2018) Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives. Chaos Solit Fract 116:114–120

    Article  MathSciNet  MATH  Google Scholar 

  30. Gómez-Aguilar JF (2018) Analytical and numerical solutions of a nonlinear alcoholism model via variable-order fractional differential equations. Phys A 494:52–75

    Article  MathSciNet  Google Scholar 

  31. Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signals Syst 2(4):303–314

    Article  MathSciNet  MATH  Google Scholar 

  32. Sahnoun MA, Ugalde HMR, Carmona JC, Gomand J (2013) Maximum power point tracking using P&O control optimized by a neural network approach: a good compromise between accuracy and complexity. Energy Procedia 42:650–659

    Article  Google Scholar 

  33. Corbier C, Ugalde HMR (2016) Low-order control-oriented modeling of piezoelectric actuator using Huberian function with low threshold: pseudolinear and neural network models. Nonlinear Dyn 85(2):923–940

    Article  MathSciNet  MATH  Google Scholar 

  34. Romero-Ugalde HM, Corbier C (2016) Robust estimation of balanced simplicity-accuracy neural networks-based models. J Dyn Syst Meas Control 138:5

    Article  Google Scholar 

  35. Ugalde HMR, Carmona JC, Alvarado VM, Reyes-Reyes J (2013) Neural network design and model reduction approach for black box nonlinear system identification with reduced number of parameters. Neurocomputing 101:170–180

    Article  Google Scholar 

  36. Zúñiga-Aguilar CJ, Gómez-Aguilar JF, Alvarado-Martínez VM, Romero-Ugalde HM (2020) Fractional order neural networks for system identification. Chaos Solit Fract 130:109444

    Article  MathSciNet  MATH  Google Scholar 

  37. Arora P, Srivastava S, Singhal S (2020) Analysis of gait flow image and gait Gaussian image using extension neural network for gait recognition. In: Deep learning and neural networks: concepts, methodologies, tools, and applications (pp 429–449). IGI Global

  38. Abduh Z, Nehary EA, Wahed MA, Kadah YM (2019) Classification of heart sounds using fractional Fourier transform based mel-frequency spectral coefficients and stacked autoencoder deep neural network. J Med Imaging Health Informatics 9(1):1–8

    Article  Google Scholar 

  39. Liu H, Pan Y, Cao J, Wang H, Zhou Y (2020) Adaptive neural network Backstepping control of fractional-order nonlinear systems with actuator faults. IEEE Trans Neural Netw Learn Syst 2020:1

    MathSciNet  Google Scholar 

  40. Sharafian A, Ghasemi R (2019) Fractional neural observer design for a class of nonlinear fractional chaotic systems. Neural Comput Appl 31(4):1201–1213

    Article  Google Scholar 

  41. Mani P, Rajan R, Shanmugam L, Joo YH (2019) Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Inf Sci 491:74–89

    Article  MathSciNet  MATH  Google Scholar 

  42. Zúñiga-Aguilar CJ, Romero-Ugalde HM, Gómez-Aguilar JF, Escobar-Jiménez RF, Valtierra-Rodríguez M (2017) Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solit Fract 103:382–403

    Article  MathSciNet  MATH  Google Scholar 

  43. Zuniga-Aguilar CJ, Coronel-Escamilla A, Gómez-Aguilar JF, Alvarado-Martínez VM, Romero-Ugalde HM (2018) New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks. Eur Phys J Plus 133(2):75

    Article  Google Scholar 

  44. Pakdaman M, Ahmadian A, Effati S, Salahshour S, Baleanu D (2017) Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl Math Comput 293:81–95

    MathSciNet  MATH  Google Scholar 

  45. Effati S, Pakdaman M, Ranjbar M (2011) A new fuzzy neural network model for solving fuzzy linear programming problems and its applications. Neural Comput Appl 20(8):1285–1294

    Article  Google Scholar 

  46. Effati S, Pakdaman M (2010) Artificial neural network approach for solving fuzzy differential equations. Inf Sci 180(8):1434–1457

    Article  MathSciNet  MATH  Google Scholar 

  47. Sabouri J, Effati S, Pakdaman M (2017) A neural network approach for solving a class of fractional optimal control problems. Neural Process Lett 45(1):59–74

    Article  Google Scholar 

  48. Raja MAZ (2014) Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect Sci 26(3):195–214

    Article  Google Scholar 

  49. Raja MAZ, Khan JA, Qureshi IM (2011) Swarm Intelligent optimized neural networks for solving fractional differential equations. Int J Innovat Comput Inf Control 7(11):6301–6318

    Google Scholar 

  50. Yavari M, Nazemi A (2019) An efficient numerical scheme for solving fractional infinite-horizon optimal control problems. ISA Trans 94:108–118

    Article  Google Scholar 

  51. Atangana A, Shafiq A (2019) Differential and integral operators with constant fractional order and variable fractional dimension. Chaos Solit Fract 127:226–243

    Article  MathSciNet  MATH  Google Scholar 

  52. Tirandaz H, Hajipour A (2017) Adaptive synchronization and anti-synchronization of TSUCS and Lü unified chaotic systems with unknown parameters. Optik 130:543–549

    Article  Google Scholar 

Download references

Acknowledgements

José Francisco Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT. The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia funded this project, under Grant no. (FP-110-42).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zúñiga-Aguilar, C.J., Gómez-Aguilar, J.F., Romero-Ugalde, H.M. et al. Numerical solution of fractal-fractional Mittag–Leffler differential equations with variable-order using artificial neural networks. Engineering with Computers 38, 2669–2682 (2022). https://doi.org/10.1007/s00366-020-01229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01229-y

Keywords

Navigation