Skip to main content
Log in

Couple stress-based dynamic stability analysis of functionally graded composite truncated conical microshells with magnetostrictive facesheets embedded within nonlinear viscoelastic foundations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, size-dependent dynamic stability of axially loaded functionally graded (FG) composite truncated conical microshells with magnetostrictive facesheets surrounded by nonlinear viscoelastic foundations including a two-parameter Winkler–Pasternak medium augmented via a Kelvin–Voigt viscoelastic approach is analyzed considering nonlinear cubic stiffness. To this purpose, von Karman-type kinematic nonlinearity along with modified couple stress theory of elasticity was applied to third-order shear deformation conical shell theory in the presence of magnetic permeability tensor and magnetic fluxes. The numerical technique of generalized differential quadrature (GDQ) was used for the solution of microstructural-dependent dynamic stability responses of FG composite truncated conical microshells. It was seen that moving from prebuckling to postbuckling domain somehow increased the significance of couple stress type of size dependency on frequency. In addition, within both prebuckling and postbuckling regimes, an increase of material gradient index decreased the importance of couple stress type of size dependency on the frequency of an axially loaded FG composite truncated conical microshell. Furthermore, it was revealed that by applying a positive magnetic field to an axially loaded truncated conical microshell with magnetostrictive facesheets, its frequency at a specific axial load value was increased in prebuckling domain and decreased in postbuckling domain. However, this pattern was reversed by applying a negative magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Courjault N, Perdu P, Infante F, Lebey T, Bley V (2015) Magnetic imaging for resistive, capacitive and inductive devices; from theory to piezo actuator failure localization. Microelectron Reliab 55:1622–1627

    Google Scholar 

  2. Elhosni M, Petit-Watelot S, Hehn M, Hage-Ali S et al (2015) Experimental study of multilayer piezo-magnetic SAW delay line for magnetic sensor. Proc Eng 120:870–873

    Google Scholar 

  3. Qin Z, Chu F, Zu J (2017) Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. Int J Mech Sci 133:91–99

    Google Scholar 

  4. Qin Z, Yang Z, Zu J, Chu F (2018) Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates. Int J Mech Sci 142:127–139

    Google Scholar 

  5. Singh J, Kumar A, Chelvane JA (2019) Stress compensated MEMS magnetic actuator based on magnetostrictive Fe65Co35 thin films. Sens Actuators A 294:54–60

    Google Scholar 

  6. Fetisov LY, Chashin DV, Saveliev DV, Afanasev MS et al (2019) Magnetoelectric direct and converse resonance effects in a flexible ferromagnetic-piezoelectric polymer structure. J Magn Magn Mater 485:251–256

    Google Scholar 

  7. Safaei B, Fattahi AM (2017) Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models. Mechanics 23:678–687

    Google Scholar 

  8. Ghanati P, Safaei B (2019) Elastic buckling analysis of polygonal thin sheets under compression. Indian J Phys 93:45–52

    Google Scholar 

  9. Fattahi AM, Safaei B, Ahmed NA (2019) A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets. Eur Phys J Plus 134:555

    Google Scholar 

  10. Safaei B (2020) The effect of embedding a porous core on the free vibration behavior of laminated composite plates. Steel Compos Struct 35:659–670

    Google Scholar 

  11. Li H, Wu T, Gao Z, Wang X, Ma H, Han Q, Qin Z (2020) An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites. Int J Mech Sci 184:105818

    Google Scholar 

  12. Everwien H, De Schellenbrger AA, Haep N, Tzschatzsch H et al (2020) Magnetic resonance elastography quantification of the solid-to-fluid transition of liver tissue due to decellularization. J Mech Behav Biomed Mater 104:103640

    Google Scholar 

  13. Gao W, Qin Z, Chu F (2020) Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerosp Sci Technol 102:105860

    Google Scholar 

  14. Sahmani S, Bahrami M, Ansari R (2014) Surface energy effects on the free vibration characteristics of postbuckled third-order shear deformable nanobeams. Compos Struct 116:552–561

    Google Scholar 

  15. Safaei B, Naseradinmousavi P, Rahmani A (2016) Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression. J Mol Graph Model 65:43–60

    Google Scholar 

  16. Arefi M, Zenkour AM (2017) Vibration and bending analysis of a sandwich microbeam with two integrated piezo-magnetic face-sheets. Compos Struct 159:479–490

    Google Scholar 

  17. Sahmani S, Aghdam MM (2017) Temperature-dependent nonlocal instability of hybrid FGM exponential shear deformable nanoshells including imperfection sensitivity. Int J Mech Sci 122:129–142

    Google Scholar 

  18. Sahmani S, Aghdam MM (2017) Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity. Compos B Eng 114:404–417

    Google Scholar 

  19. Sahmani S, Aghdam MM (2017) Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Compos Struct 166:104–113

    Google Scholar 

  20. Sahmani S, Aghdam MM (2017) Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell. Phys Lett A 381:3818–3830

    MathSciNet  Google Scholar 

  21. Malikan M, Nguyen VB (2018) Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Phys E 102:8–28

    Google Scholar 

  22. Sahmani S, Fattahi AM (2018) Small scale effects on buckling and postbuckling behaviors of axially loaded FGM nanoshells based on nonlocal strain gradient elasticity theory. Appl Math Mech 39:561–580

    MathSciNet  MATH  Google Scholar 

  23. Sobhy M, Abazid MA (2019) Dynamic and instability analyses of FG graphene-reinforced sandwich deep curved nanobeams with viscoelastic core under magnetic field effect. Compos B Eng 174:106966

    Google Scholar 

  24. Fattahi AM, Safaei B, Moaddab E (2019) The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates. Steel Compos Struct 32:281–292

    Google Scholar 

  25. Rostami R, Mohammadimhr M, Ghannad M, Jalali A (2018) Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties. Theor Appl Mech Lett 8:97–108

    Google Scholar 

  26. Sahmani S, Aghdam MM, Rabczuk T (2018) Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos Struct 186:68–78

    Google Scholar 

  27. Sahmani S, Aghdam MM, Rabczuk T (2018) A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets. Mater Res Express 5:045048

    Google Scholar 

  28. Sahmani S, Aghdam MM, Rabczuk T (2018) Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos Struct 198:51–62

    Google Scholar 

  29. Sahmani S, Aghdam MM (2017) Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory. Eur Phys J Plus 132:1–17

    Google Scholar 

  30. Krysko AV, Awrejcewicz J, Pavlov SP, Bodyagina KS, Zhigalov MV, Krysko VA (2018) Non-linear dynamics of size-dependent Euler-Bernoulli beams with topologically optimized microstructure and subjected to temperature field. Int J Nonlinear Mech 104:75–86

    Google Scholar 

  31. Sahmani S, Aghdam MM (2018) Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency. Results Phys 8:879–892

    Google Scholar 

  32. Ghorbanpour Arani A, Soleymani T (2019) Size-dependent vibration analysis of an axially moving sandwich beam with MR core and axially FGM faces layers in yawed supersonic airflow. Eur J Mech A Solids 77:103792

    MathSciNet  MATH  Google Scholar 

  33. Jiao P, Alavi AH (2019) Size-dependent buckling instability and recovery of beam-like, architected microstructures. Mater Des 162:405–417

    Google Scholar 

  34. Sahmani S, Safaei B (2019) Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin Walled Struct 140:342–356

    Google Scholar 

  35. Sahmani S, Safaei B (2019) Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation. Thin Walled Struct 143:106226

    Google Scholar 

  36. Sahmani S, Safaei B (2020) Influence of homogenization models on size-dependent nonlinear bending and postbuckling of bi-directional functionally graded micro/nano-beams. Appl Math Model 82:336–358

    MathSciNet  MATH  Google Scholar 

  37. Zhang B, Li H, Kong L, Shen H, Zhang X (2019) Size-dependent vibration and stability of moderately thick functionally graded micro-plates using a differential quadrature-based geometric mapping scheme. Eng Anal Bound Elem 108:339–365

    MathSciNet  MATH  Google Scholar 

  38. Thanh C-L, Tran LV, Vu-Huu T, Nguyen-Xuan H, Abdel-Wahab M (2019) Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates. Comput Methods Appl Mech Eng 353:253–276

    MathSciNet  MATH  Google Scholar 

  39. Sahmani S, Fattahi AM, Ahmed NA (2019) Nonlinear torsional buckling and postbuckling analysis of cylindrical silicon nanoshells incorporating surface free energy effects. Microsyst Technol 25:3533–3546

    Google Scholar 

  40. Sarafraz A, Sahmani S, Aghdam MM (2019) Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects. Appl Math Model 66:195–226

    MathSciNet  MATH  Google Scholar 

  41. Hashemian M, Foroutan S, Toghraei D (2019) Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mech Mater 139:103209

    Google Scholar 

  42. Sahmani S, Fattahi AM, Ahmed NA (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35:1173–1189

    Google Scholar 

  43. Sahmani S, Madyira DM (2019) Nonlocal strain gradient nonlinear primary resonance of micro/nano-beams made of GPL reinforced FG porous nanocomposite materials. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1695627

    Article  Google Scholar 

  44. Xie B, Sahmani S, Safaei B, Xu B (2020) Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory. Eng Comput. https://doi.org/10.1007/s00366-019-00931-w

    Article  Google Scholar 

  45. Wang X, Zhou G, Safaei B, Sahmani S (2020) Boundary layer modeling of surface residual tension in postbuckling behavior of axially loaded silicon panels at nanoscale embedded in elastic foundations. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1794889

    Article  Google Scholar 

  46. Yang X, Sahmani S, Safaei B (2020) Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput. https://doi.org/10.1007/s00366-019-00901-2

    Article  Google Scholar 

  47. Yi H, Sahmani S, Safaei B (2020) On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions. Arch Civ Mech Eng 20:1–23

    Google Scholar 

  48. Li Q, Xie B, Sahmani S, Safaei B (2020) Surface stress effect on the nonlinear free vibrations of functionally graded composite nanoshells in the presence of modal interaction. J Braz Soc Mech Sci Eng 42:237

    Google Scholar 

  49. Sahmani S, Fattahi AM, Ahmed NA (2020) Surface elastic shell model for nonlinear primary resonant dynamics of FG porous nanoshells incorporating modal interactions. Int J Mech Sci 165:105203

    Google Scholar 

  50. Sarafraz A, Sahmani S, Aghdam MM (2020) Nonlinear primary resonance analysis of nanoshells including vibrational mode interactions based on the surface elasticity theory. Appl Math Mech 41:233–260

    Google Scholar 

  51. Esen I (2020) Dynamics of size-dependent Timoshenko micro beams subjected to moving loads. Int J Mech Sci 175:105501

    Google Scholar 

  52. Fan F, Lei B, Sahmani S, Safaei B (2020) On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates. Thin Walled Struct 154:106841

    Google Scholar 

  53. Sahmani S, Fattahi AM, Ahmed NA (2020) Develop a refined truncated cubic lattice structure for nonlinear large-amplitude vibrations of micro/nano-beams made of nanoporous materials. Eng Comput 36:359–375

    Google Scholar 

  54. Yuan Y, Zhao K, Sahmani S, Safaei B (2020) Size-dependent shear buckling response of FGM skew nanoplates modeled via different homogenization schemes. Appl Math Mech 41:587–604

    Google Scholar 

  55. Akgoz B, Civalek O (2018) Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment. Compos B Eng 150:68–77

    Google Scholar 

  56. Farokhi H, Ghayesh MH (2018) Nonlinear mechanics of electrically actuated microplates. Int J Eng Sci 123:197–213

    MathSciNet  MATH  Google Scholar 

  57. Jia XL, Ke LL, Zhong XL, Sun Y, Yang J, Kitipornchai S (2018) Thermal-mechanical-electrical buckling behavior of functionally graded micro-beams based on modified couple stress theory. Compos Struct 202:625–634

    Google Scholar 

  58. Yu T, Zhang J, Hu H, Bui TQ (2019) A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis. Compos Struct 211:76–88

    Google Scholar 

  59. Thanh C-L, Tran LV, Vu-Huu T, Abdel-Wahab M (2019) The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis. Comput Methods Appl Mech Eng 350:337–361

    MathSciNet  MATH  Google Scholar 

  60. Farzam A, Hassani B (2019) Isogeometric analysis of in-plane functionally graded porous microplates using modified couple stress theory. Aerosp Sci Technol 91:508–524

    Google Scholar 

  61. Chen M, Zheng S (2019) Size-dependent models of 0–1/0–3 polarized PLZT unimorphs and bimorphs based on a modified couple stress theory. Mech Res Commun 98:42–49

    Google Scholar 

  62. Yuan Y, Zhao K, Zhao Y, Sahmani S, Safaei B (2020) Couple stress-based nonlinear buckling analysis of hydrostatic pressurized functionally graded composite conical microshells. Mech Mater 148:103507

    Google Scholar 

  63. Yuan Y, Zhao K, Han Y, Sahmani S, Safaei B (2020) Nonlinear oscillations of composite conical microshells with in-plane heterogeneity based upon a couple stress-based shell model. Thin Walled Struct 154:106857

    Google Scholar 

  64. Kumar H, Mukhopadhyay S (2020) Thermoelastic damping analysis for size-dependent microplate resonators utilizing the modified couple stress theory and the three-phase-lag heat conduction model. Int J Heat Mass Transf 148:118997

    Google Scholar 

  65. Karamanli A, Aydogdu M (2020) Vibration of functionally graded shear and normal deformable porous microplates via finite element method. Compos Struct 237:111934

    Google Scholar 

  66. Ghayesh MH, Farokhi H, Farajpour A (2020) Viscoelastically coupled in-plane and transverse dynamics of imperfect microplates. Thin Walled Struct 150:106117

    Google Scholar 

  67. Zhu C, Fang X, Liu J (2020) A new approach for smart control of size-dependent nonlinear free vibration of viscoelastic orthotropic piezoelectric doubly-curved nanoshells. Appl Math Model 77:137–168

    MathSciNet  MATH  Google Scholar 

  68. Fan F, Xu Y, Sahmani S, Safaei B (2020) Modified couple stress-based geometrically nonlinear oscillations of porous functionally graded microplates using NURBS-based isogeometric approach. Comput Methods Appl Mech Eng 372:113400

    MathSciNet  Google Scholar 

  69. Alinaghizadeh F, Shariati M (2020) Nonlinear analysis of size-dependent annular sector and rectangular microplates under transverse loading and resting on foundations based on the modified couple stress theory. Thin Walled Struct 149:106583

    Google Scholar 

  70. Mishnaevsky JI (2007) Computational mesomechanics of composites. In: John Wiley, vol 74, pp 2979–2987

  71. Faghih Shojaei M, Ansari R, Mohammadi V, Rouhi H (2014) Nonlinear forced vibration analysis of postbuckled beams. Arch Appl Mech 84:421–440

    MATH  Google Scholar 

  72. Ansari R, Mohammadi V, Faghih Shojaei M, Gholami R, Sahmani S (2014) On the forced vibration analysis of Timoshenko nanobeams based on the surface stress elasticity theory. Compos Part B Eng 60:158–166

    Google Scholar 

  73. Sahmani S, Bahrami M, Ansari R (2014) Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Compos Struct 110:219–230

    Google Scholar 

  74. Sahmani S, Bahrami M, Aghdam MM, Ansari R (2014) Surface effects on the nonlinear forced vibration response of third-order shear deformable nanobeams. Compos Struct 118:149–158

    Google Scholar 

  75. Sahmani S, Aghdam MM, Bahrami M (2015) On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos Struct 121:377–385

    Google Scholar 

  76. Li S-R, Teng Z-C, Zhou Y-H (2004) Free vibration of heated Euler-Bernoulli beams with thermal postbuckling deformations. J Therm Stress 27:843–856

    Google Scholar 

  77. Li S-R, Batra RC, Ma L-S (2007) Vibration of thermally post-buckled orthotropic circular plates. J Therm Stress 30:43–57

    Google Scholar 

  78. Li F-M, Kishimoto K, Huang W-H (2009) The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method. Mech Res Commun 36:595–602

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hunan Province Education Scientific Research Project of China, called Optimum researches on curriculum system of the engineering management specialty based on prefabricated building model (No. XJT(2019), NO. 291(1021)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingjiao Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\frac{\partial {N}_{xx}^{*}}{\partial x}+\frac{1}{x\mathrm{sin}\left(\alpha \right)}\frac{\partial {N}_{x\theta }^{*}}{\partial \theta }+\frac{{N}_{xx}^{*}-{N}_{\theta \theta }^{*}}{x}+\frac{1}{4{x}^{2}\mathrm{sin}\left(\alpha \right)}\frac{\partial {\mathcal{Q}}_{x}^{**}}{\partial \theta }+\frac{1}{4x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{Q}}_{x}^{**}}{\partial x\partial \theta }+\frac{1}{4{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{Q}}_{\theta }^{**}}{\partial {\theta }^{2}}={I}_{0}\frac{{\partial }^{2}u}{\partial {t}^{2}}+{I}_{3}\frac{{\partial }^{3}w}{\partial x\partial {t}^{2}}-\left({I}_{1}-{I}_{3}\right)\frac{{\partial }^{2}{\psi }_{x}}{\partial {t}^{2}},$$
$$\frac{1}{x\mathrm{sin}\left(\alpha \right)}\frac{\partial {N}_{\theta \theta }^{*}}{\partial \theta }+\frac{\partial {N}_{x\theta }^{*}}{\partial x}+2\frac{{N}_{x\theta }^{*}}{x}+\frac{{Q}_{\theta }^{*}}{x\mathrm{tan}\left(\alpha \right)}-\frac{1}{4}\frac{{\partial }^{2}{\mathcal{Q}}_{x}^{**}}{\partial {x}^{2}}-\frac{1}{4x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{Q}}_{\theta }^{**}}{\partial x\partial \theta }={I}_{0}\frac{{\partial }^{2}v}{\partial {t}^{2}}+\frac{{I}_{3}}{x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{3}w}{\partial \theta \partial {t}^{2}}-\left({I}_{1}-{I}_{3}\right)\frac{{\partial }^{2}{\psi }_{\theta }}{\partial {t}^{2}},$$
$$\frac{\partial {Q}_{x}^{*}}{\partial x}-\frac{\partial {P}_{x}^{*}}{\partial x}+\frac{1}{x\mathrm{sin}\left(\alpha \right)}\left(\frac{\partial {Q}_{\theta }^{*}}{\partial \theta }-\frac{\partial {P}_{\theta }^{*}}{\partial \theta }\right)+\frac{{Q}_{x}^{*}-{P}_{x}^{*}}{x}+\frac{{\partial }^{2}{R}_{xx}^{*}}{\partial {x}^{2}}+\frac{1}{{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}{R}_{\theta \theta }^{*}}{\partial {\theta }^{2}}-\frac{1}{x}\frac{\partial {R}_{\theta \theta }^{*}}{\partial x}+\frac{2}{x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{2}{R}_{x\theta }^{*}}{\partial x\partial \theta }+\frac{2}{{x}^{2}\mathrm{sin}\left(\alpha \right)}\frac{\partial {R}_{x\theta }^{*}}{\partial \theta }-\frac{{N}_{\theta \theta }^{*}}{x\mathrm{tan}\left(\alpha \right)}-\frac{\partial }{\partial x}\left({N}_{xx}^{*}\frac{\partial w}{\partial x}+\frac{{N}_{x\theta }^{*}}{x\mathrm{sin}\left(\alpha \right)}\frac{\partial w}{\partial \theta }\right)-\frac{\partial }{\partial \theta }\left(\frac{{N}_{\theta \theta }^{*}}{{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{\partial w}{\partial \theta }+\frac{{N}_{x\theta }^{*}}{x\mathrm{sin}\left(\alpha \right)}\frac{\partial w}{\partial x}\right)-\frac{1}{2x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{2}\left({\mathcal{N}}_{xx}^{**}-{\mathcal{N}}_{\theta \theta }^{**}+{\mathcal{Y}}_{xx}^{**}-{\mathcal{Y}}_{\theta \theta }^{**}\right)}{\partial x\partial \theta }-\frac{1}{2{x}^{2}\mathrm{sin}\left(\alpha \right)}\frac{\partial \left({\mathcal{N}}_{xx}^{**}+{\mathcal{Y}}_{xx}^{**}\right)}{\partial \theta }-\frac{1}{4{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}\left({N}_{x\theta }^{**}+{\mathcal{Y}}_{x\theta }^{**}\right)}{\partial {\theta }^{2}}+\frac{1}{4}\frac{{\partial }^{2}{\mathcal{Y}}_{x\theta }^{**}}{\partial {x}^{2}}+\frac{2}{x{h}^{2}\mathrm{sin}\left(\alpha \right)}\frac{\partial {\mathcal{P}}_{x}^{**}}{\partial \theta }-\frac{2}{{h}^{2}}\frac{\partial {\mathcal{P}}_{\theta }^{**}}{\partial x}-\frac{1}{2x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{3}{\mathcal{T}}_{x}^{**}}{\partial {x}^{2}\partial \theta }-\frac{1}{2{x}^{3}\mathrm{sin}\left(\alpha \right)}\frac{\partial {\mathcal{T}}_{x}^{**}}{\partial \theta }-\frac{1}{2{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{3}{\mathcal{T}}_{\theta }^{**}}{\partial x\partial {\theta }^{2}}-\frac{1}{4{x}^{3}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{T}}_{\theta }^{**}}{\partial {\theta }^{2}}-{K}_{w}w+{K}_{s}\left(\frac{{\partial }^{2}w}{\partial {x}^{2}}+\frac{1}{{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}w}{\partial {\theta }^{2}}\right)+{K}_{nl}{w}^{3}+{N}_{xx}^{M}\frac{{\partial }^{2}w}{\partial {x}^{2}}+{N}_{\theta \theta }^{M}\frac{1}{{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}w}{\partial {\theta }^{2}}+P\frac{{\partial }^{2}w}{\partial {x}^{2}}=2{I}_{0}c\frac{\partial w}{\partial t}+{I}_{0}\frac{{\partial }^{2}w}{\partial {t}^{2}}-{I}_{6}\left(\frac{{\partial }^{4}w}{\partial {x}^{2}\partial {t}^{2}}+\frac{1}{{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{4}w}{\partial {\theta }^{2}\partial {t}^{2}}\right)+{I}_{3}\left(\frac{{\partial }^{3}u}{\partial x\partial {t}^{2}}+\frac{1}{x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{3}v}{\partial \theta \partial {t}^{2}}\right)+\left({I}_{4}-{I}_{6}\right)\left(\frac{{\partial }^{3}{\psi }_{x}}{\partial x\partial {t}^{2}}+\frac{1}{x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{3}{\psi }_{\theta }}{\partial \theta \partial {t}^{2}}\right),$$
$$\frac{\partial \left({M}_{xx}^{*}-{R}_{xx}^{*}\right)}{\partial x}-\frac{\left({M}_{\theta \theta }^{*}-{R}_{\theta \theta }^{*}\right)}{x}+\frac{1}{x\mathrm{sin}\left(\alpha \right)}\frac{\partial \left({M}_{x\theta }^{*}-{R}_{x\theta }^{*}\right)}{\partial \theta }-{Q}_{x}^{*}+{P}_{x}^{*}+\frac{1}{2x\mathrm{sin}\left(\alpha \right)}\frac{\partial \left({\mathcal{N}}_{\theta \theta }^{**}+{\mathcal{Y}}_{\theta \theta }^{**}\right)}{\partial \theta }+\frac{1}{4}\frac{\partial {\mathcal{N}}_{x\theta }^{**}}{\partial x}-\frac{1}{4}\frac{\partial {\mathcal{Y}}_{x\theta }^{**}}{\partial x}+\frac{1}{4x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{P}}_{x}^{**}}{\partial x\partial \theta }+\frac{1}{4{x}^{2}\mathrm{sin}\left(\alpha \right)}\frac{\partial {\mathcal{P}}_{x}^{**}}{\partial \theta }+\frac{2{\mathcal{P}}_{\theta }^{**}}{{h}^{2}}+\frac{1}{4{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{P}}_{\theta }^{**}}{\partial {\theta }^{2}}=\left({I}_{2}-{I}_{4}+{I}_{6}\right)\frac{{\partial }^{2}{\psi }_{x}}{\partial {t}^{2}}+\left({I}_{6}-{I}_{4}\right)\frac{{\partial }^{3}w}{\partial x\partial {t}^{2}}-\left({I}_{1}-{I}_{3}\right)\frac{{\partial }^{2}u}{\partial {t}^{2}},$$
$$\frac{1}{x\mathrm{sin}\left(\alpha \right)}\frac{\partial \left({{\varvec{M}}}_{{\varvec{\theta}}{\varvec{\theta}}}^{\boldsymbol{*}}-{{\varvec{R}}}_{{\varvec{\theta}}{\varvec{\theta}}}^{\boldsymbol{*}}\right)}{\partial \theta }+\frac{\partial \left({M}_{x\theta }^{*}-{R}_{x\theta }^{*}\right)}{\partial x}-\frac{\left({M}_{x\theta }^{*}-{R}_{x\theta }^{*}\right)}{x}-{Q}_{\theta }^{*}+{P}_{\theta }^{*}-\frac{1}{2}\frac{\partial \left({N}_{xx}^{**}-{\mathcal{Y}}_{xx}^{**}\right)}{\partial x}-\frac{1}{4x\mathrm{sin}\left(\alpha \right)}\frac{\partial \left({N}_{x\theta }^{**}-{\mathcal{Y}}_{x\theta }^{**}\right)}{\partial \theta }-\frac{2{\mathcal{P}}_{x}^{**}}{{h}^{2}}-\frac{1}{4}\frac{{\partial }^{2}{\mathcal{P}}_{x}^{**}}{\partial {x}^{2}}-\frac{1}{4x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{P}}_{\theta }^{**}}{\partial x\partial \theta }+\frac{1}{4}\frac{{\partial }^{2}{\mathcal{T}}_{x}^{**}}{\partial {x}^{2}}-\frac{1}{4x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{2}\left({\mathcal{T}}_{x}^{**}-{\mathcal{T}}_{\theta }^{**}\right)}{\partial x\partial \theta }+\frac{1}{4{x}^{2}\mathrm{sin}\left(\alpha \right)}\frac{\partial {\mathcal{T}}_{x}^{**}}{\partial \theta }-\frac{1}{4{x}^{2}{\mathrm{sin}}^{2}\left(\alpha \right)}\frac{{\partial }^{2}{\mathcal{T}}_{\theta }^{**}}{\partial {\theta }^{2}}=\left({I}_{2}-{I}_{4}+{I}_{6}\right)\frac{{\partial }^{2}{\psi }_{\theta }}{\partial {t}^{2}}+\frac{{I}_{6}-{I}_{4}}{x\mathrm{sin}\left(\alpha \right)}\frac{{\partial }^{3}w}{\partial \theta \partial {t}^{2}}-\left({I}_{1}-{I}_{3}\right)\frac{{\partial }^{2}v}{\partial {t}^{2}},$$
$${\int }_{-\frac{h}{2}}^\frac{h}{2}\left[\frac{\partial {\mathcal{B}}_{x}}{\partial x}\mathrm{cos}\left(\beta z\right)+\frac{\partial {\mathcal{B}}_{\theta }}{\partial \theta }\frac{\mathrm{cos}\left(\beta z\right)}{x\mathrm{sin}\left(\alpha \right)}+{\mathcal{B}}_{z}\beta \mathrm{sin}\left(\beta z\right)\right]dz=0.$$

Appendix 2

$$\left\{{A}_{11}^{*},{A}_{22}^{*},{B}_{11}^{*},{B}_{22}^{*},{C}_{11}^{*},{C}_{22}^{*}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{E}_{f}}{1-{\nu }_{f}^{2}}\left\{\mathrm{1,1},z,z,\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{3}}{3{h}^{2}}\right\}dz+{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{E\left(z\right)}{1-\nu {\left(z\right)}^{2}}\left\{\mathrm{1,1},z,z,\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{3}}{3{h}^{2}}\right\}dz+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{E}_{f}}{1-{\nu }_{f}^{2}}\left\{\mathrm{1,1},z,z,\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{3}}{3{h}^{2}}\right\}dz,$$
$$\left\{{D}_{11}^{*},{D}_{22}^{*},{F}_{11}^{*},{F}_{22}^{*},{H}_{11}^{*},{H}_{22}^{*}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{E}_{f}}{1-{\nu }_{f}^{2}}\left\{{z}^{2},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz+{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{E\left(z\right)}{1-\nu {\left(z\right)}^{2}}\left\{{z}^{2},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{E}_{f}}{1-{\nu }_{f}^{2}}\left\{{z}^{2},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz,$$
$$\left\{{A}_{12}^{*},{B}_{12}^{*},{C}_{12}^{*},{D}_{12}^{*},{F}_{12}^{*},{H}_{12}^{*}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{\nu }_{f}{E}_{f}}{1-{\nu }_{f}^{2}}\left\{1,z,\frac{4{z}^{3}}{3{h}^{2}},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz +{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{\nu \left(z\right)E\left(z\right)}{1-\nu {\left(z\right)}^{2}}\left\{1,z,\frac{4{z}^{3}}{3{h}^{2}},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{\nu }_{f}{E}_{f}}{1-{\nu }_{f}^{2}}\left\{1,z,\frac{4{z}^{3}}{3{h}^{2}},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz,$$
$$\left\{{A}_{66}^{*},{B}_{66}^{*},{C}_{66}^{*},{D}_{66}^{*},{F}_{66}^{*},{H}_{66}^{*}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{E}_{f}}{2\left(1+{\nu }_{f}\right)}\left\{1,z,\frac{4{z}^{3}}{3{h}^{2}},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz+{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{E(z)}{2\left(1+\nu (z)\right)}\left\{1,z,\frac{4{z}^{3}}{3{h}^{2}},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{E}_{f}}{2\left(1+{\nu }_{f}\right)}\left\{1,z,\frac{4{z}^{3}}{3{h}^{2}},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz,$$
$$\left\{{A}_{44}^{*},{A}_{55}^{*},{D}_{44}^{*},{D}_{55}^{*},{F}_{44}^{*},{F}_{55}^{*}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{E}_{f}}{2\left(1+{\nu }_{f}\right)}\left\{\mathrm{1,1},\frac{4{z}^{2}}{{h}^{2}},\frac{4{z}^{2}}{{h}^{2}},\frac{16{z}^{4}}{{h}^{4}},\frac{16{z}^{4}}{{h}^{4}}\right\}dz+{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{E(z)}{2\left(1+\nu (z)\right)}\left\{\mathrm{1,1},\frac{4{z}^{2}}{{h}^{2}},\frac{4{z}^{2}}{{h}^{2}},\frac{16{z}^{4}}{{h}^{4}},\frac{16{z}^{4}}{{h}^{4}}\right\}dz+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{E}_{f}}{2\left(1+{\nu }_{f}\right)}\left\{\mathrm{1,1},\frac{4{z}^{2}}{{h}^{2}},\frac{4{z}^{2}}{{h}^{2}},\frac{16{z}^{4}}{{h}^{4}},\frac{16{z}^{4}}{{h}^{4}}\right\}dz,$$
$$\left\{{\mathcal{A}}_{11}^{**},{\mathcal{A}}_{22}^{**},{\mathcal{D}}_{11}^{**},{\mathcal{D}}_{22}^{**},,{\mathcal{F}}_{11}^{**},{\mathcal{F}}_{22}^{**}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{l}^{2}{E}_{f}}{1+{\nu }_{f}}\left\{\mathrm{1,1},,\frac{4{z}^{2}}{{h}^{2}},\frac{4{z}^{2}}{{h}^{2}},\frac{16{z}^{4}}{{h}^{4}},\frac{16{z}^{4}}{{h}^{4}}\right\}dz+{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{{l}^{2}E(z)}{1+\nu (z)}\left\{\mathrm{1,1},,\frac{4{z}^{2}}{{h}^{2}},\frac{4{z}^{2}}{{h}^{2}},\frac{16{z}^{4}}{{h}^{4}},\frac{16{z}^{4}}{{h}^{4}}\right\}dz+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{l}^{2}{E}_{f}}{1+{\nu }_{f}}\left\{\mathrm{1,1},,\frac{4{z}^{2}}{{h}^{2}},\frac{4{z}^{2}}{{h}^{2}},\frac{16{z}^{4}}{{h}^{4}},\frac{16{z}^{4}}{{h}^{4}}\right\}dz,$$
$$\left\{{\mathcal{A}}_{44}^{**},{\mathcal{A}}_{55}^{**},{\mathcal{B}}_{44}^{**},{\mathcal{B}}_{55}^{**},{\mathcal{C}}_{44}^{**},{\mathcal{C}}_{55}^{**}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{l}^{2}{E}_{f}}{1+{\nu }_{f}}\left\{\mathrm{1,1},z,z,\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{3}}{3{h}^{2}}\right\}+{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{{l}^{2}E(z)}{1+\nu (z)}\left\{\mathrm{1,1},z,z,\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{3}}{3{h}^{2}}\right\}+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{l}^{2}{E}_{f}}{1+{\nu }_{f}}\left\{\mathrm{1,1},z,z,\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{3}}{3{h}^{2}}\right\},$$
$$\left\{{\mathcal{D}}_{44}^{**},{\mathcal{D}}_{55}^{**},{\mathcal{F}}_{44}^{**},{\mathcal{F}}_{55}^{**},{\mathcal{H}}_{44}^{**},{\mathcal{H}}_{55}^{**}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}\frac{{l}^{2}{E}_{f}}{1+{\nu }_{f}}\left\{{z}^{2},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}},\frac{16{z}^{6}}{9{h}^{4}}\right\}+{\int }_{-\frac{h}{2}}^\frac{h}{2}\frac{{l}^{2}E(z)}{1+\nu (z)}\left\{{z}^{2},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}},\frac{16{z}^{6}}{9{h}^{4}}\right\}+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}\frac{{l}^{2}{E}_{f}}{1+{\nu }_{f}}\left\{{z}^{2},{z}^{2},\frac{4{z}^{4}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}},\frac{16{z}^{6}}{9{h}^{4}}\right\}.$$

Im addition, the moments of inertia can be derived as:

$$\left\{{I}_{0},{I}_{1},{I}_{2},{I}_{3},{I}_{4},{I}_{6}\right\}={\int }_{-\frac{h}{2}-{h}_{f}}^{-\frac{h}{2}}{\rho }_{f}\left\{1,z,{z}^{2},\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz+{\int }_{-\frac{h}{2}}^\frac{h}{2}\rho (z)\left\{1,z,{z}^{2},\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz+{\int }_\frac{h}{2}^{\frac{h}{2}+{h}_{f}}{\rho }_{f}\left\{1,z,{z}^{2},\frac{4{z}^{3}}{3{h}^{2}},\frac{4{z}^{4}}{3{h}^{2}},\frac{16{z}^{6}}{9{h}^{4}}\right\}dz,$$

where \({E}_{f}, {\nu }_{f}\) and \({\rho }_{f}\) are, respectively, the Young’s modulus, Poisson’s ratio and mass density of the magnetostrictive facesheets. In addition, \({h}_{f}\) denotes the thickness of the magnetostrictive facesheets which are equal to \({h}_{f}=h/10\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Sahmani, S. & Safaei, B. Couple stress-based dynamic stability analysis of functionally graded composite truncated conical microshells with magnetostrictive facesheets embedded within nonlinear viscoelastic foundations. Engineering with Computers 37, 1635–1655 (2021). https://doi.org/10.1007/s00366-020-01182-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01182-w

Keywords

Navigation