Abstract
The goal of this study was to investigate a novel approach of predicting the ultimate capacity of axially loaded circular concrete-filled steel tube (CCFST) columns. A hybrid intelligent system, namely GAP-BART, was developed based on the Bayesian additive regression tree (BART) combining with three nature-inspired optimization algorithms such as Genetic Algorithm (GA), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO), and then applied. Three sub-hybrid models of the system were built, abbreviated as G-BART, A-BART, and P-BART, respectively, using 504 experimental data collected from published research. The compiled database covered five input variables, including the diameter of the circular cross-section—section (D), the wall thickness of the steel tube (t), the length of the column (L), the compressive strength of the concrete (\(f_{\text{c}}^{'}\)), and the yield strength of the steel tube (fy). The coefficient of determination (R2) values of (0.9971, 0.9982, and 0.9986) and (0.9891, 0.9923 and 0.9931) were achieved for training and testing of G-BART, A-BART, and P-BART models, respectively. The P-BART model performed the lowest RMSE and MAE values for the training and testing set of (66.85 kN and 49.60 kN) and (141.24 kN and 102.04 kN), respectively. These results indicated that although the proposed models were able to estimate ultimate axial capacity with high accuracy, the P-BART model had the best performance among them. For benchmarking, the obtained results were validated against several mathematical approaches as well as other AI techniques (MARS, ANN). The findings of the comparative analysis clearly showed superior ability to predict the CFST ultimate axial capacity relative to the benchmark models. The relative importance of each predictor was investigated to find the most significant input variables. The results confirmed that the hybrid GAP-BART system can serve as a reliable and accurate tool for the design of CCFST columns and to predict their performance.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Han L-HH, Li W, Bjorhovde R (2014) Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. J Constr Steel Res 100:211–228. https://doi.org/10.1016/j.jcsr.2014.04.016
Lu ZH, Zhao YG (2010) Suggested empirical models for the axial capacity of circular CFT stub columns. J Constr Steel Res 66:850–862. https://doi.org/10.1016/j.jcsr.2009.12.014
Zeghiche J, Chaoui K (2005) An experimental behaviour of concrete-filled steel tubular columns. J Constr Steel Res 61:53–66. https://doi.org/10.1016/j.jcsr.2004.06.006
Xiong MX, Xiong DX, Liew JYR (2017) Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Eng Struct 136:494–510. https://doi.org/10.1016/j.engstruct.2017.01.037
Xiong MX, Xiong DX, Liew JYR (2017) Behaviour of steel tubular members infilled with ultra high strength concrete. J Constr Steel Res 138:168–183. https://doi.org/10.1016/j.jcsr.2017.07.001
Ye Y, Han LH, Sheehan T, Guo ZX (2016) Concrete-filled bimetallic tubes under axial compression: experimental investigation. Thin-Walled Struct 108:321–332. https://doi.org/10.1016/j.tws.2016.09.004
Ekmekyapar T, Al-Eliwi BJM (2016) Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Struct 105:220–230. https://doi.org/10.1016/j.tws.2016.04.004
Giakoumelis G, Lam D (2004) Axial capacity of circular concrete-filled tube columns. J Constr Steel Res 60:1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001
Beck AT, de Oliveira WLA, De Nardim S, ElDebs ALHC (2009) Reliability-based evaluation of design code provisions for circular concrete-filled steel columns. Eng Struct 31:2299–2308. https://doi.org/10.1016/j.engstruct.2009.05.004
Li N, Lu YY, Lisss S, Liang HJ (2015) Statistical-based evaluation of design codes for circular concrete-filled steel tube columns. Steel Compos Struct 18:519–546. https://doi.org/10.12989/scs.2015.18.2.519
Han LH, An YF (2014) Performance of concrete-encased CFST stub columns under axial compression. J Constr Steel Res 93:62–76. https://doi.org/10.1016/j.jcsr.2013.10.019
Evirgen B, Tuncan A, Taskin K (2014) Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression. Thin-Walled Struct 80:46–56. https://doi.org/10.1016/j.tws.2014.02.022
Moon J, Kim JJ, Lee TH, Lee HE (2014) Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic. J Constr Steel Res 101:184–191. https://doi.org/10.1016/j.jcsr.2014.05.011
Güneyisi EM, Gültekin A, Mermerdaş K (2016) Ultimate capacity prediction of axially loaded CFST short columns. Int J Steel Struct 16:99–114. https://doi.org/10.1007/s13296-016-3009-9
Ahmadi M, Naderpour H, Kheyroddin A (2017) ANN model for predicting the compressive strength of circular steel-confined concrete. Int J Civ Eng 15:213–221. https://doi.org/10.1007/s40999-016-0096-0
Ren Q, Li M, Zhang M et al (2019) Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm. Appl Sci. https://doi.org/10.3390/app9142802
Sarir P, Shen SL, Wang ZF et al (2019) Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Eng Comput. https://doi.org/10.1007/s00366-019-00855-5
Ahmadi M, Naderpour H, Kheyroddin A (2014) Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Arch Civ Mech Eng 14:510–517. https://doi.org/10.1016/j.acme.2014.01.006
Luat NV, Lee J, Lee DH, Lee K (2020) GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading. Comput Concr 25:1–4. https://doi.org/10.12989/cac.2020.25.1.001
ACI Committee 318 (2014) Building code requirements for structural concrete and commentary (ACI318-14). Concrete Institute, Farmington Hills
AISC Committee (2010) Specification for Structural Steel Buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago
European Committee for Standardization (2004) Eurocode-4: design of composite steel and concrete structures-Part 1-1: general rules and rules for buildings. London, UK
ZB Wang, Tao Z, Han LH et al (2017) Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng Struct 135:209–221. https://doi.org/10.1016/j.engstruct.2016.12.049
Luat NV, Woo S, Han SW, Lee K (2020) Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models—a new approach. Steel Compos Struct (Under review)
Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67
Bui DK, Nguyen TN, Ngo TD, Nguyen-Xuan H (2019) An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings. Energy 190:116370. https://doi.org/10.1016/j.energy.2019.116370
Luat N-V, Lee K, Thai DK (2020) Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils. Geomech Eng 20:385–397. https://doi.org/10.12989/gae.2020.20.5.385
Chipman HA, George EI, McCulloch RE (2012) BART: Bayesian additive regression trees. Ann Appl Stat 6:266–298. https://doi.org/10.1214/09-AOAS285
Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, Oxford
Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, vol 4, pp 1942–1948
Kaveh A, Mahdavi VR (2015) A hybrid CBO-PSO algorithm for optimal design of truss structures with dynamic constraints. Appl Soft Comput J 34:260–273. https://doi.org/10.1016/j.asoc.2015.05.010
Razmara Shooli A, Vosoughi AR, Banan MR (2019) A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames. Appl Soft Comput 85:105843. https://doi.org/10.1016/j.asoc.2019.105843
Tian H, Shu J, Han L (2019) The effect of ICA and PSO on ANN results in approximating elasticity modulus of rock material. Eng Comput 35:305–314. https://doi.org/10.1007/s00366-018-0600-z
Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier, Oxford
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department
Das SK, Biswal RK, Sivakugan N, Das B (2011) Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ Earth Sci 64:201–210. https://doi.org/10.1007/s12665-010-0839-1
Gomes GF, de Almeida FA, Junqueira DM et al (2019) Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods. Eng Struct 181:111–123. https://doi.org/10.1016/j.engstruct.2018.11.081
Moayedi H, Jahed Armaghani D (2018) Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Eng Comput 34:347–356. https://doi.org/10.1007/s00366-017-0545-7
Kapelner A, Bleich J (2016) bartMachine: machine learning with bayesian additive regression trees. J Stat Softw. https://doi.org/10.18637/jss.v070.i04
Scrucca L (2017) On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution. R J 9:187–206. https://doi.org/10.32614/RJ-2017-008
Cheng M-Y, Cao M-T (2014) Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams. Eng Appl Artif Intell 28:86–96. https://doi.org/10.1016/j.engappai.2013.11.001
Bendtsen C (2011) PSO: particle swarm optimization. https://cran.r-project.org/package=pso
Ren Y, Bai G (2010) Determination of optimal SVM parameters by using GA/PSO. J Comput 5:1160–1168. https://doi.org/10.4304/jcp.5.8.1160-1168
Koopialipoor M, Fallah A, Armaghani DJ et al (2019) Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng Comput 35:243–256. https://doi.org/10.1007/s00366-018-0596-4
Luat NV, Nguyen VQ, Lee S et al (2020) An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils. Geoemech Eng 21:583–598. https://doi.org/10.12989/gae.2020.21.6.583
Vega Yon G, Muñoz E (2017) {ABCoptim}: an implementation of the artificial bee colony ({ABC}) algorithm. https://github.com/gvegayon/ABCoptim
Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. https://doi.org/10.1029/2000JD900719
Alavi AH, Gandomi AH, Mousavi M, Mollahasani A (2010) High-precision modeling of uplift capacity of suction caissons using a hybrid computational method. Geomech Eng 2:253–280. https://doi.org/10.12989/gae.2010.2.4.253
Bui DK, Nguyen T, Chou JS et al (2018) A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater 180:320–333. https://doi.org/10.1016/j.conbuildmat.2018.05.201
Le-Duc T, Nguyen QH, Nguyen-Xuan H (2020) Balancing composite motion optimization. Inf Sci (Ny) 520:250–270. https://doi.org/10.1016/j.ins.2020.02.013
Klöppel V, Goder W (1957) Traglastversuche mit ausbetonierten Stahlrohren und Aufstellung einer Bemessungsformel. Der Stahlbau 26:1–10
Salani HJ, Sims JR (1964) Behavior of mortar filled steel tubes in compression. J Proc 61:1271–1284
Chapman JC, Neogi PK (1966) Research on concrete filled tubular columns. Imperial College, London
Gardner NJ, Jacobson ER (1967) Structural behavior of concrete filled steel tubes. ACI J Proc 64:404–413. https://doi.org/10.14359/7575
Furlong RW (1967) Strength of steel-encased concrete beam columns. J Struct Div 93(5):113–124
Gardner NJ (1968) Use of spiral welded steel tubes in pipe columns. ACI J Proc 65:937–942. https://doi.org/10.14359/7525
Knowles RB, Park R (1969) Strength of concrete filled steel tubular columns. J Struct Div 95:2565–2588
Guiaux P, Janss J (1970) Comportement au Flambement de Colonnes Constituees de Tubes en Acier Remplis de Beton. Brussels, Belgium
Cai S, Jiao Z (1984) Behavior and ultimate strength of short concrete-filled steel tubular columns. J Build Struct 6:13–29
Cai SH, Gu WK (1985) Behavior and ultimate strength of long concrete-filled steel tubular columns. J Build Struct 6:32–40
Sakino K, Tomii M, Watanabe K (1985) Sustaining load capacity of plain concrete stub columns confined by circular steel tube. In: Proceedings 1st ASCCS internaional conference on steel-concrete composite structures. Harbin, China, pp 112–118
Lin CY (1988) Axial capacity of concrete infilled cold-formed steel columns. In: Ninth international specialty conference on cold-formed steel structures. St. Louis, Missouri, USA, pp 443–457
Masuo K, Adachi M, Kawabata K et al (1991) Buckling behavior of concrete filled circular steel tubular columns using light-weight concrete. In: Proceedings 3rd ASCCS international conference on composite construction. Fukuoka, Japan, pp 95–100
Sakino K, Hayashi H (1991) Behavior of concrete filled steel tubular stub columns under concentric loading. In: Proceedings of 3rd international conference on steel-concrete composite structures. Fukuoka, Japan, pp 25–30
Luksha LK, Nesterovich AP (1991) Strength of tubular concrete cylinders under combined loading. In: Proceedings of 3rd international conference on steel-concrete composite structures. Fukuoka, Japan, pp 67–71
Kenny JR, Bruce DA, Bjorhovde R (1994) Removal of yield stress limitation for composite tubular columns. Eng J AISC 31:1–11
Prion HGL, Boehme J (1994) Beam-column behaviour of steel tubes filled with high strength concrete. Can J Civ Eng 21:207–218. https://doi.org/10.1139/l94-024
Fujii K (1994) Structural and ultimate behavior of two types of mortar filled steel tubes in compression. In: Proceedings of the 4th ASCCS international conference. Košice, Slovakia, pp 194–197
Bergmann R (1994) Load introduction in composite columns filled with high strength concrete. In: Tubular structures VI, proceedings of 6th international symposium on tubular structures. Melbourne, Australia, pp 373–380
Matsui C, Tsuda K (1996) Strength and behavior of slender concrete filled steel tubular columns. In: Proceedings of the second international symposium on civil infrastructure systems. Hongkong, China
O’Shea MD, Bridge RQ (1998) Tests on circular thin-walled steel tubes filled with very high strength concrete. Research report no. R754. Sydney, Australia
Schneider SP (1998) Axially loaded concrete-filled steel tubes. J Struct Eng 124:1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
Tan K, Pu X, Cai S (1999) Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes. J Build Struct 20:10–15
Rangan AEK, Rangan BV (1999) Tests on high-strength concrete-filled steel tubular columns. ACI Struct J 96:268–274. https://doi.org/10.14359/618
Yamamoto T, Kawaguchi J, Morino S (2000) Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns. Compos Constr Steel Concr IV 40616:879–890. https://doi.org/10.1061/40616(281)76
O’Shea MD, Bridge RQ (2000) Design of circular thin-walled concrete filled steel tubes. J Struct Eng 126:1295–1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
Han LH, Yan SZ (2000) experimental studies on the strength with high slenderness ratio concrete filled steel tubular column. In: Composite and hybrid structures, proceedings of the sixth asccs international conference on steel-concrete composite structures. Los Angeles, California, pp 419–425
Mathias J, Kent G (2002) Mechanical behavior of circular steel-concrete composite stub columns. J Struct Eng 128:1073–1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)
Chen B, Hikosaka H (2003) Eccentricity ratio effect on the behavior of eccentrically loaded CFST columns. In: Proceedings ASSCCA’03 international conference advances in structures (ASCCS-7). Sydney, Australia, pp 973–978
Han LH, Yao GH (2003) Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. J Constr Steel Res 59:1455–1475. https://doi.org/10.1016/S0143-974X(03)00102-0
Uenaka K, Hayami M, Kitoh H, Sonoda K (2003) Experimental study on concrete filled double tubular steel columns under axial loading. In: Proceedings ASSCCA’03 international conference advances in structures (ASCCS-7). Sydney, Australia, pp 877–882
Ghannam S, Jawad YA, Hunaiti Y (2004) Failure of lightweight aggregate concrete-filled steel tubular columns. Steel Compos Struct 4:1–8. https://doi.org/10.12989/scs.2004.4.1.001
Sakino K, Nakahara H, Morino S, Nishiyama I (2004) Behavior of centrally loaded concrete-filled steel-tube short columns. J Struct Eng 130:180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
Han LH, Yao GH (2004) Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Struct 42:1357–1377. https://doi.org/10.1016/j.tws.2004.03.016
Yu Z, Ding FX, Cai CS (2007) Experimental behavior of circular concrete-filled steel tube stub columns. J Constr Steel Res 63:165–174. https://doi.org/10.1016/j.jcsr.2006.03.009
Yu Q, Tao Z, Wu YX (2008) Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Struct 46:362–370. https://doi.org/10.1016/j.tws.2007.10.001
Lee S-H, Uy B, Kim S-H et al (2011) Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J Constr Steel Res 67:1–13. https://doi.org/10.1016/j.jcsr.2010.07.003
Yang YF, Han LH (2012) Concrete filled steel tube (CFST) columns subjected to concentrically partial compression. Thin-Walled Struct 50:147–156. https://doi.org/10.1016/j.tws.2011.09.007
Dundu M (2012) Compressive strength of circular concrete filled steel tube columns. Thin-Walled Struct 56:62–70. https://doi.org/10.1016/j.tws.2012.03.008
Portolés JM, Romero ML, Bonet JL, Filippou FC (2011) Experimental study of high strength concrete-filled circular tubular columns under eccentric loading. J Constr Steel Res 67:623–633. https://doi.org/10.1016/j.jcsr.2010.11.017
Chang X, Fu L, Zhao HB, Bin Zhang Y (2013) Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes. Thin-Walled Struct 73:273–280. https://doi.org/10.1016/j.tws.2013.08.018
Acknowledgements
This research was supported by Ministry of Land, Infrastructure and Transport of Korean Government (Grant 20CTAP-C143093-03). The authors would like to express sincere gratitude for their support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: Experimental data of CCFST columns under axially loaded used in this study
Appendix: Experimental data of CCFST columns under axially loaded used in this study
References | Specimen | L (mm) | D (mm) | t (mm) | \(f_{y}\) (MPa) | \(f_{\text{c}}^{ '}\) (MPa) | \(N_{\text{u}}\) (kN) |
---|---|---|---|---|---|---|---|
Klöppel and Goder [52] | 7 | 1420.1 | 95.0 | 12.50 | 274.6 | 20.3 | 947.0 |
8 | 1420.1 | 95.0 | 12.75 | 272.6 | 20.3 | 937.7 | |
9 | 1420.1 | 95.0 | 12.40 | 272.6 | 20.3 | 907.0 | |
10 | 860.0 | 95.0 | 12.60 | 274.6 | 20.3 | 1017.8 | |
11 | 860.0 | 95.0 | 12.70 | 272.6 | 20.3 | 1008.0 | |
12 | 860.0 | 95.0 | 12.70 | 272.6 | 20.3 | 1033.8 | |
14 | 1979.9 | 95.0 | 12.50 | 275.6 | 20.3 | 907.0 | |
15 | 1979.9 | 95.0 | 12.60 | 279.5 | 20.3 | 916.8 | |
41 | 860.0 | 95.0 | 3.66 | 326.5 | 25.0 | 656.1 | |
42 | 860.0 | 95.0 | 3.68 | 386.4 | 25.0 | 686.4 | |
43 | 860.0 | 95.0 | 3.40 | 335.4 | 25.0 | 656.1 | |
44 | 1420.1 | 95.0 | 3.86 | 326.5 | 25.0 | 566.7 | |
45 | 1420.1 | 95.0 | 3.91 | 386.4 | 25.0 | 605.8 | |
46 | 1420.1 | 95.0 | 3.58 | 335.4 | 25.0 | 575.6 | |
47 | 1979.9 | 95.0 | 3.76 | 326.5 | 25.0 | 536.5 | |
48 | 1979.9 | 95.0 | 3.78 | 386.4 | 25.0 | 565.8 | |
49 | 1979.9 | 95.0 | 3.51 | 335.4 | 25.0 | 487.5 | |
63 | 2220.0 | 216.0 | 4.06 | 284.4 | 25.0 | 1023.1 | |
64 | 2220.0 | 216.0 | 4.11 | 299.1 | 22.9 | 1834.4 | |
65 | 2220.0 | 216.0 | 4.04 | 288.3 | 29.8 | 2289.1 | |
66 | 2220.0 | 216.0 | 4.11 | 286.3 | 29.8 | 2238.8 | |
69 | 2220.0 | 216.0 | 6.05 | 389.3 | 22.9 | 2461.6 | |
70 | 2220.0 | 216.0 | 5.97 | 393.3 | 22.9 | 2421.2 | |
71 | 2220.0 | 216.0 | 6.50 | 295.2 | 29.8 | 2803.7 | |
72 | 2220.0 | 216.0 | 6.30 | 405.0 | 29.8 | 2932.3 | |
73 | 1979.9 | 95.0 | 3.86 | 332.4 | 24.1 | 498.2 | |
74 | 1979.9 | 95.0 | 3.40 | 337.4 | 24.1 | 472.8 | |
75 | 1979.9 | 95.0 | 3.58 | 355.0 | 24.1 | 472.8 | |
76 | 1979.9 | 95.0 | 3.73 | 326.5 | 24.1 | 412.8 | |
83 | 1050.0 | 121.0 | 3.66 | 295.2 | 21.1 | 695.3 | |
84 | 1050.0 | 121.0 | 3.73 | 327.6 | 21.1 | 746.4 | |
85 | 1050.0 | 121.0 | 3.76 | 307.9 | 24.2 | 836.7 | |
86 | 1050.0 | 121.0 | 3.99 | 326.5 | 24.2 | 867.0 | |
89 | 1050.0 | 121.0 | 5.61 | 344.2 | 21.1 | 998.2 | |
90 | 1050.0 | 121.0 | 5.41 | 343.2 | 21.1 | 1017.8 | |
91 | 1050.0 | 121.0 | 5.46 | 330.5 | 24.2 | 1099.2 | |
92 | 1050.0 | 121.0 | 5.56 | 321.6 | 24.2 | 1078.7 | |
95 | 2310.1 | 121.0 | 3.71 | 295.2 | 21.1 | 640.5 | |
96 | 2310.1 | 121.0 | 3.76 | 327.6 | 21.1 | 629.4 | |
97 | 2310.1 | 121.0 | 3.71 | 307.9 | 24.2 | 695.3 | |
98 | 2310.1 | 121.0 | 3.86 | 326.5 | 24.2 | 755.3 | |
101 | 2310.1 | 121.0 | 5.69 | 344.2 | 21.1 | 786.4 | |
102 | 2310.1 | 121.0 | 5.49 | 343.2 | 21.1 | 815.8 | |
103 | 2310.1 | 121.0 | 5.64 | 330.5 | 24.2 | 873.6 | |
104 | 2310.1 | 121.0 | 5.44 | 321.6 | 24.2 | 865.2 | |
Salani and Sims [53] | 22F | 1524.0 | 38.1 | 2.77 | 524.0 | 17.9 | 107.6 |
23F | 1524.0 | 38.1 | 2.77 | 524.0 | 17.9 | 121.0 | |
24F | 1524.0 | 38.1 | 2.77 | 524.0 | 17.9 | 106.8 | |
51F | 1524.0 | 38.1 | 2.77 | 524.0 | 27.8 | 113.0 | |
52F | 1524.0 | 38.1 | 2.77 | 524.0 | 27.8 | 106.8 | |
28F | 1524.0 | 50.8 | 1.65 | 524.0 | 21.3 | 115.2 | |
29F | 1524.0 | 50.8 | 1.65 | 524.0 | 21.3 | 114.3 | |
30F | 1524.0 | 50.8 | 1.65 | 524.0 | 27.9 | 120.5 | |
71F | 1524.0 | 69.9 | 1.24 | 524.0 | 27.9 | 230.9 | |
40F | 1524.0 | 76.2 | 1.65 | 524.0 | 20.8 | 226.4 | |
41F | 1524.0 | 76.2 | 1.65 | 524.0 | 20.8 | 245.1 | |
42F | 1524.0 | 76.2 | 1.65 | 524.0 | 27.2 | 320.3 | |
Chapman and Neogi [54] | A1 | 1879.6 | 355.6 | 11.18 | 355.1 | 38.1 | 11,458.6 |
A4 | 1879.6 | 355.6 | 11.18 | 355.1 | 32.8 | 10,711.3 | |
A5 | 1879.6 | 355.6 | 4.72 | 276.5 | 21.0 | 3517.2 | |
A6 | 2082.8 | 355.6 | 7.98 | 355.1 | 23.4 | 7433.0 | |
B1 | 711.2 | 127.3 | 1.63 | 370.6 | 66.2 | 1285.5 | |
B1X | 711.2 | 127.3 | 1.63 | 328.9 | 66.2 | 1285.5 | |
B2 | 711.2 | 127.1 | 2.95 | 370.6 | 66.2 | 1305.6 | |
B2X | 711.2 | 127.1 | 2.95 | 328.9 | 66.2 | 1305.6 | |
DF1 | 406.4 | 140.1 | 9.68 | 265.4 | 27.6 | 2949.2 | |
DF1X | 406.4 | 140.1 | 9.68 | 268.9 | 28.0 | 2949.2 | |
DF2 | 406.4 | 140.4 | 4.93 | 288.9 | 32.7 | 1823.8 | |
DF2X | 406.4 | 140.4 | 4.93 | 297.9 | 32.7 | 1823.8 | |
SC1 | 812.8 | 168.2 | 4.52 | 297.9 | 31.4 | 2006.1 | |
SC2 | 812.8 | 168.4 | 4.52 | 297.9 | 43.2 | 2233.0 | |
SC3 | 812.8 | 168.2 | 4.52 | 297.9 | 43.2 | 2112.9 | |
SC4 | 812.8 | 168.3 | 4.47 | 297.9 | 23.0 | 1743.7 | |
Gardener and Jacobson [55] | 1 | 1524.0 | 101.7 | 3.07 | 605.1 | 34.1 | 818.5 |
2 | 1524.0 | 101.7 | 3.10 | 605.1 | 31.2 | 800.7 | |
3 | 203.3 | 101.7 | 3.07 | 605.1 | 34.1 | 1112.1 | |
4 | 203.3 | 101.7 | 3.07 | 605.1 | 31.2 | 1067.6 | |
5 | 1050.0 | 120.7 | 4.09 | 451.6 | 34.4 | 1156.5 | |
6 | 1050.0 | 120.8 | 4.09 | 451.6 | 29.6 | 1092.7 | |
7 | 1050.0 | 120.8 | 4.09 | 451.6 | 25.9 | 949.7 | |
8 | 241.3 | 120.8 | 4.06 | 451.6 | 34.4 | 1201.0 | |
9 | 241.4 | 120.8 | 4.09 | 451.6 | 29.6 | 1201.0 | |
10 | 241.4 | 120.8 | 4.09 | 451.6 | 25.9 | 1112.1 | |
11 | 1676.4 | 152.6 | 3.15 | 415.1 | 20.9 | 938.6 | |
12 | 1676.4 | 152.7 | 3.15 | 415.1 | 23.1 | 880.7 | |
13 | 304.8 | 152.6 | 3.18 | 415.1 | 20.9 | 1201.0 | |
14 | 304.9 | 152.6 | 3.15 | 415.1 | 23.1 | 1201.0 | |
15 | 304.9 | 152.6 | 4.93 | 633.4 | 42.0 | 2909.1 | |
16 | 304.9 | 152.6 | 4.90 | 633.4 | 43.4 | 2913.6 | |
18 | 1524.0 | 76.5 | 1.70 | 363.3 | 25.0 | 244.7 | |
19 | 152.3 | 76.4 | 1.70 | 363.3 | 25.0 | 355.9 | |
20 | 609.5 | 76.4 | 1.73 | 363.3 | 40.9 | 411.5 | |
21 | 609.4 | 76.5 | 1.73 | 363.3 | 25.9 | 330.3 | |
22 | 152.3 | 76.5 | 1.68 | 363.3 | 40.9 | 434.6 | |
23 | 152.4 | 76.4 | 1.70 | 363.3 | 25.9 | 372.3 | |
24 | 152.4 | 76.5 | 1.70 | 363.3 | 33.3 | 433.3 | |
25 | 152.5 | 76.5 | 1.73 | 363.3 | 33.3 | 434.6 | |
Furlong [56] | Column-1 | 914.4 | 114.3 | 3.18 | 413.7 | 29.0 | 711.7 |
Column-2 | 914.4 | 114.3 | 3.18 | 413.7 | 29.0 | 756.2 | |
Column-8 | 914.4 | 152.4 | 1.55 | 330.9 | 21.0 | 682.4 | |
Column-9 | 914.4 | 152.4 | 1.55 | 330.9 | 25.9 | 721.5 | |
Column-10 | 914.4 | 152.4 | 1.55 | 330.9 | 25.9 | 733.1 | |
Column-11 | 914.4 | 127.0 | 2.41 | 330.9 | 35.2 | 627.2 | |
Column-12 | 914.4 | 127.0 | 2.41 | 330.9 | 35.2 | 622.8 | |
Column-13 | 914.4 | 127.0 | 2.41 | 330.9 | 35.2 | 658.3 | |
Gardener [57] | 1 | 1828.8 | 168.7 | 2.64 | 297.9 | 17.9 | 822.9 |
2 | 1828.8 | 168.7 | 2.64 | 297.9 | 34.1 | 916.3 | |
3 | 1828.8 | 169.2 | 2.62 | 317.2 | 36.5 | 756.2 | |
4 | 1828.8 | 169.2 | 2.62 | 317.2 | 33.6 | 689.5 | |
5 | 2133.6 | 168.1 | 3.61 | 221.3 | 26.6 | 947.5 | |
6 | 2133.6 | 168.1 | 3.61 | 221.3 | 32.8 | 1049.8 | |
7 | 2133.6 | 168.7 | 5.00 | 260.6 | 32.9 | 1129.8 | |
8 | 2133.6 | 168.7 | 5.00 | 260.6 | 27.4 | 1165.4 | |
1a | 304.8 | 168.7 | 2.64 | 297.9 | 17.9 | 1325.6 | |
2a | 304.8 | 168.7 | 2.64 | 297.9 | 34.1 | 1218.8 | |
3a | 304.8 | 169.2 | 2.62 | 317.2 | 36.5 | 1307.8 | |
4a | 304.8 | 169.2 | 2.62 | 317.2 | 33.6 | 1330.0 | |
5a | 304.8 | 168.1 | 3.61 | 221.3 | 26.6 | 1556.9 | |
6a | 304.8 | 168.1 | 3.61 | 221.3 | 32.8 | 1432.3 | |
6b | 304.8 | 168.1 | 3.61 | 221.3 | 32.8 | 1463.5 | |
7a | 304.8 | 168.7 | 5.00 | 260.6 | 32.9 | 1966.1 | |
7b | 304.8 | 168.7 | 5.00 | 260.6 | 32.9 | 1970.6 | |
8a | 304.8 | 168.7 | 5.00 | 260.6 | 27.4 | 1983.9 | |
8b | 304.8 | 168.7 | 5.00 | 260.6 | 27.4 | 1983.9 | |
Knowles and Park [58] | Column-1 | 1727.2 | 88.9 | 5.84 | 399.9 | 40.0 | 614.7 |
Column-2 | 1422.4 | 88.9 | 5.84 | 399.9 | 39.6 | 711.7 | |
Column-3 | 1117.6 | 88.9 | 5.84 | 399.9 | 39.0 | 715.3 | |
Column-4 | 812.8 | 88.9 | 5.84 | 399.9 | 41.8 | 918.6 | |
Column-5 | 508.0 | 88.9 | 5.84 | 399.9 | 40.9 | 992.0 | |
Column-7 | 1727.2 | 82.6 | 1.40 | 482.6 | 41.3 | 224.6 | |
Column-8 | 1422.4 | 82.6 | 1.40 | 482.6 | 37.0 | 294.5 | |
Column-9 | 1117.6 | 82.6 | 1.40 | 482.6 | 40.9 | 355.9 | |
Column-10 | 812.8 | 82.6 | 1.40 | 482.6 | 40.9 | 400.3 | |
Column-11 | 508.0 | 82.6 | 1.40 | 482.6 | 40.9 | 489.3 | |
Column-12 | 254.0 | 82.6 | 1.40 | 482.6 | 40.9 | 530.2 | |
Guiaux and Janss [59] | 2 | 3285.0 | 218.3 | 6.45 | 302.0 | 42.2 | 2064.3 |
3 | 2204.0 | 218.3 | 6.30 | 302.0 | 37.1 | 2412.4 | |
4 | 943.0 | 218.3 | 6.50 | 302.0 | 37.1 | 2755.7 | |
5 | 941.5 | 218.5 | 6.38 | 302.0 | 37.1 | 2745.9 | |
6 | 941.5 | 219.3 | 6.05 | 302.0 | 37.1 | 2804.7 | |
9.1 | 2844.0 | 95.3 | 3.78 | 281.5 | 42.2 | 279.5 | |
9.2 | 2844.0 | 95.3 | 3.70 | 281.5 | 42.2 | 281.5 | |
9.3 | 2844.0 | 95.5 | 3.83 | 281.5 | 42.2 | 291.3 | |
10.1 | 1942.5 | 95.5 | 3.73 | 281.5 | 37.1 | 362.8 | |
10.2 | 1942.0 | 95.3 | 3.78 | 281.5 | 37.1 | 407.0 | |
10.3 | 1943.3 | 95.3 | 3.78 | 281.5 | 37.1 | 407.0 | |
11.1 | 1469.0 | 95.5 | 3.75 | 281.5 | 42.2 | 444.2 | |
11.2 | 1466.8 | 95.3 | 3.73 | 281.5 | 42.2 | 441.3 | |
11.3 | 1468.0 | 95.0 | 3.70 | 281.5 | 42.2 | 495.2 | |
12.1 | 997.5 | 95.5 | 3.70 | 281.5 | 42.2 | 524.7 | |
12.2 | 992.0 | 95.3 | 3.55 | 281.5 | 42.2 | 507.0 | |
12.3 | 995.0 | 95.3 | 3.68 | 281.5 | 42.2 | 534.5 | |
13.1 | 504.0 | 95.3 | 3.73 | 281.5 | 42.2 | 637.4 | |
13.2 | 503.8 | 95.5 | 3.75 | 281.5 | 42.2 | 632.5 | |
13.3 | 505.0 | 95.5 | 3.73 | 281.5 | 42.2 | 666.9 | |
Cai and Jiao [60] | G-21 | 1100.0 | 273.0 | 8.00 | 306.9 | 34.7 | 5580.0 |
G-32 | 1100.0 | 273.0 | 8.00 | 306.9 | 11.9 | 4040.3 | |
G-33 | 1100.0 | 273.0 | 8.00 | 306.9 | 11.9 | 3844.2 | |
G-56 | 1100.0 | 273.0 | 8.00 | 306.9 | 17.5 | 5197.5 | |
G-57 | 1100.0 | 273.0 | 8.00 | 306.9 | 17.5 | 5295.6 | |
G-31 | 880.0 | 204.0 | 2.00 | 235.4 | 12.2 | 1068.9 | |
G-35 | 880.0 | 204.0 | 2.00 | 235.4 | 12.2 | 1039.5 | |
G-46 | 840.0 | 204.0 | 2.00 | 235.4 | 33.4 | 1294.5 | |
G-50 | 840.0 | 204.0 | 2.00 | 235.4 | 46.1 | 1637.7 | |
G-51 | 840.0 | 204.0 | 2.00 | 235.4 | 46.9 | 1691.6 | |
G-38 | 410.0 | 96.0 | 5.00 | 410.9 | 12.2 | 912.0 | |
G-39 | 450.0 | 96.0 | 5.00 | 410.9 | 12.2 | 843.4 | |
G-44 | 450.0 | 96.0 | 5.00 | 410.9 | 33.4 | 1044.4 | |
G-45 | 450.0 | 96.0 | 5.00 | 410.9 | 33.4 | 1167.0 | |
G-48 | 400.0 | 96.0 | 5.00 | 410.9 | 46.1 | 1176.8 | |
G-49 | 400.0 | 96.0 | 5.00 | 410.9 | 46.1 | 1171.9 | |
G-58 | 400.0 | 96.0 | 5.00 | 410.9 | 46.1 | 1073.8 | |
G-59 | 405.0 | 96.0 | 5.00 | 410.9 | 46.1 | 1122.9 | |
G-36 | 500.0 | 121.0 | 12.00 | 294.2 | 12.2 | 2417.3 | |
G-37 | 500.0 | 121.0 | 12.00 | 294.2 | 12.2 | 2373.2 | |
G-42 | 500.0 | 121.0 | 12.00 | 294.2 | 33.4 | 2500.7 | |
G-1 | 660.0 | 166.0 | 5.00 | 274.6 | 31.4 | 1745.6 | |
G-2 | 660.0 | 166.0 | 5.00 | 274.6 | 31.4 | 1696.6 | |
G-12 | 660.0 | 166.0 | 5.00 | 274.6 | 34.7 | 1863.3 | |
G-15 | 660.0 | 166.0 | 5.00 | 274.6 | 34.7 | 1873.1 | |
G-16 | 660.0 | 166.0 | 5.00 | 274.6 | 34.7 | 1696.6 | |
G-22 | 660.0 | 166.0 | 5.00 | 274.6 | 34.7 | 1735.8 | |
G-23 | 660.0 | 166.0 | 5.00 | 274.6 | 34.7 | 2030.0 | |
G-29 | 660.0 | 166.0 | 5.00 | 274.6 | 34.7 | 2108.4 | |
G-41 | 500.0 | 121.0 | 12.00 | 294.2 | 11.9 | 2334.0 | |
G-43 | 500.0 | 121.0 | 12.00 | 294.2 | 33.4 | 2422.2 | |
G-52 | 500.0 | 121.0 | 12.00 | 294.2 | 46.9 | 2589.0 | |
G-7 | 350.0 | 166.0 | 5.00 | 274.6 | 34.7 | 1784.8 | |
G-8 | 350.0 | 166.0 | 5.00 | 274.6 | 34.7 | 2039.8 | |
G-9 | 500.0 | 166.0 | 5.00 | 274.6 | 34.7 | 2000.6 | |
G-10 | 500.0 | 166.0 | 5.00 | 274.6 | 34.7 | 2044.7 | |
G-11 | 660.0 | 166.0 | 5.00 | 274.6 | 34.7 | 1976.0 | |
G-18 | 1100.0 | 166.0 | 5.00 | 274.6 | 34.7 | 1985.8 | |
G-64 | 260.0 | 320.0 | 7.00 | 250.1 | 53.0 | 7914.0 | |
G-65 | 440.0 | 320.0 | 7.00 | 250.1 | 53.0 | 5903.6 | |
G-66 | 520.0 | 320.0 | 7.00 | 250.1 | 53.0 | 5893.8 | |
G-67 | 520.0 | 320.0 | 7.00 | 250.1 | 53.0 | 6384.1 | |
G-60 | 200.0 | 121.0 | 12.00 | 294.2 | 9.2 | 2706.6 | |
G-62 | 200.0 | 121.0 | 12.00 | 294.2 | 15.7 | 2745.9 | |
G-63 | 200.0 | 121.0 | 12.00 | 294.2 | 15.7 | 2843.9 | |
Cai and Gu [61] | C-1 | 324.0 | 108.0 | 4.00 | 339.1 | 34.0 | 1118.0 |
C-2 | 324.0 | 108.0 | 4.00 | 339.1 | 34.0 | 1059.1 | |
C-3 | 324.0 | 108.0 | 4.00 | 339.1 | 34.0 | 1073.8 | |
C-4 | 648.0 | 108.0 | 4.00 | 339.1 | 34.0 | 825.7 | |
C-5 | 648.0 | 108.0 | 4.00 | 339.1 | 34.0 | 828.7 | |
C-6 | 864.0 | 108.0 | 4.00 | 339.1 | 34.0 | 766.9 | |
C-7 | 864.0 | 108.0 | 4.00 | 339.1 | 34.0 | 802.2 | |
C-8 | 864.0 | 108.0 | 4.00 | 339.1 | 34.0 | 869.8 | |
C-9 | 1080.0 | 108.0 | 4.00 | 339.1 | 34.0 | 837.5 | |
C-10 | 1080.0 | 108.0 | 4.00 | 339.1 | 34.0 | 783.6 | |
C-11 | 1620.0 | 108.0 | 4.00 | 339.1 | 34.0 | 708.0 | |
C-12 | 1620.0 | 108.0 | 4.00 | 339.1 | 34.0 | 647.2 | |
C-13 | 1620.0 | 108.0 | 4.00 | 339.1 | 34.0 | 644.3 | |
C-14 | 2160.0 | 108.0 | 4.00 | 339.1 | 34.0 | 672.7 | |
C-15 | 2160.0 | 108.0 | 4.00 | 339.1 | 34.0 | 698.2 | |
C-16 | 2160.0 | 108.0 | 4.00 | 339.1 | 34.0 | 676.7 | |
C-17 | 2700.0 | 108.0 | 4.00 | 339.1 | 34.0 | 649.2 | |
C-18 | 3240.0 | 108.0 | 4.00 | 339.1 | 34.0 | 560.0 | |
C-19 | 3240.0 | 108.0 | 4.00 | 339.1 | 34.0 | 478.6 | |
C-20 | 3240.0 | 108.0 | 4.00 | 339.1 | 34.0 | 601.1 | |
Sakino et al. [62] | S3LA | 200.0 | 101.8 | 2.94 | 319.7 | 17.9 | 627.6 |
S3HA | 200.0 | 101.8 | 2.94 | 319.7 | 37.4 | 660.0 | |
S6LA | 200.0 | 101.8 | 5.70 | 305.0 | 17.9 | 953.2 | |
S6HA | 200.0 | 101.8 | 5.70 | 305.0 | 37.4 | 970.9 | |
SPLA-1 | 200.0 | 100.0 | 0.52 | 244.2 | 17.9 | 238.3 | |
SPLA-2 | 200.0 | 100.0 | 0.52 | 244.2 | 17.9 | 242.2 | |
SPLA-3 | 200.0 | 100.0 | 0.52 | 244.2 | 17.9 | 237.3 | |
SPHA-4 | 200.0 | 100.0 | 0.52 | 244.2 | 37.4 | 389.3 | |
SPHA-5 | 200.0 | 100.0 | 0.52 | 244.2 | 37.4 | 394.2 | |
SPHA-6 | 200.0 | 100.0 | 0.52 | 244.2 | 37.4 | 404.0 | |
Lin [63] | D1 | 480.0 | 150.0 | 0.70 | 245.2 | 22.6 | 538.4 |
D2 | 800.0 | 150.0 | 0.70 | 245.2 | 22.6 | 513.9 | |
D4 | 800.0 | 150.0 | 1.40 | 245.2 | 22.6 | 697.3 | |
D6 | 800.0 | 150.0 | 2.10 | 245.2 | 22.6 | 787.5 | |
E1 | 480.0 | 150.0 | 0.70 | 245.2 | 33.4 | 744.3 | |
E6 | 800.0 | 150.0 | 2.10 | 245.2 | 35.3 | 1073.8 | |
Masuo et al. [64] | 1A2 | 1150.0 | 190.7 | 6.00 | 505.0 | 55.9 | 3062.6 |
1A4 | 2300.0 | 190.7 | 6.00 | 505.0 | 55.9 | 2611.5 | |
1A6 | 3450.0 | 190.7 | 6.00 | 505.0 | 55.9 | 2059.4 | |
1G2 | 1150.0 | 190.7 | 6.00 | 505.0 | 48.3 | 3147.9 | |
1G6 | 3450.0 | 190.7 | 6.00 | 505.0 | 48.3 | 2132.9 | |
2A2 | 1600.0 | 267.4 | 7.00 | 460.9 | 55.9 | 5180.9 | |
2A4 | 3200.0 | 267.4 | 7.00 | 460.9 | 55.9 | 4533.6 | |
2G2 | 1600.0 | 267.4 | 7.00 | 460.9 | 48.3 | 5187.7 | |
Sakino and Hayashi [65] | L-20-1 | 360.0 | 178.0 | 9.00 | 283.3 | 22.2 | 2922.4 |
L-20-2 | 360.0 | 178.0 | 9.00 | 283.3 | 22.2 | 2853.7 | |
H-20-1 | 360.0 | 178.0 | 9.00 | 283.3 | 45.4 | 3216.6 | |
H-20-2 | 360.0 | 178.0 | 9.00 | 283.3 | 45.4 | 3177.4 | |
L-32-1 | 360.0 | 179.0 | 5.50 | 248.5 | 22.2 | 1814.2 | |
L-32-2 | 360.0 | 179.0 | 5.50 | 248.5 | 23.9 | 1814.2 | |
H-32-1 | 360.0 | 179.0 | 5.50 | 248.5 | 43.6 | 2039.8 | |
H-32-2 | 360.0 | 179.0 | 5.50 | 248.5 | 43.6 | 2030.0 | |
L-58-1 | 360.0 | 174.0 | 3.00 | 266.0 | 23.9 | 1314.1 | |
L-58-2 | 360.0 | 174.0 | 3.00 | 266.0 | 23.9 | 1304.3 | |
H-58-1 | 360.0 | 174.0 | 3.00 | 266.0 | 45.7 | 1608.3 | |
H-58-2 | 360.0 | 174.0 | 3.00 | 266.0 | 45.7 | 1676.9 | |
Luksha and Nesterovich [66] | SB-1 | 477.0 | 159.0 | 5.10 | 391.5 | 41.5 | 477.0 |
Kenny et al. [67] | 1 | 914.4 | 139.7 | 9.22 | 681.9 | 38.4 | 3047.0 |
2 | 914.4 | 139.7 | 9.22 | 681.9 | 38.4 | 2597.8 | |
3 | 3048.0 | 139.7 | 9.22 | 681.9 | 38.4 | 2001.7 | |
4 | 914.4 | 177.8 | 12.75 | 593.6 | 38.4 | 5253.3 | |
5 | 914.4 | 177.8 | 12.75 | 593.6 | 38.4 | 5524.7 | |
6 | 3048.0 | 177.8 | 12.75 | 593.6 | 38.4 | 4310.3 | |
Prion and Boehme [68] | B1 | 900.0 | 152.0 | 1.70 | 270.0 | 73.0 | 1550.0 |
B3 | 900.0 | 152.0 | 1.70 | 270.0 | 73.0 | 1458.0 | |
B5 | 500.0 | 152.0 | 1.70 | 270.0 | 73.0 | 1548.0 | |
B7 | 500.0 | 152.0 | 1.70 | 270.0 | 73.0 | 1448.0 | |
BP9 | 660.0 | 152.0 | 1.70 | 328.0 | 85.0 | 1863.0 | |
BP10 | 660.0 | 152.0 | 1.70 | 328.0 | 85.0 | 1895.0 | |
Fujii [69] | B60-16 | 850.0 | 114.0 | 1.79 | 266.0 | 37.0 | 515.0 |
B60-35 | 850.0 | 114.0 | 3.35 | 291.0 | 37.0 | 785.0 | |
B60-45 | 850.0 | 114.0 | 4.44 | 332.0 | 37.0 | 902.0 | |
B60-60 | 850.0 | 114.0 | 6.00 | 486.0 | 37.0 | 1334.0 | |
B100-60 | 1250.0 | 114.0 | 5.91 | 486.0 | 25.0 | 1177.0 | |
B150-16 | 1750.0 | 114.0 | 1.93 | 266.0 | 33.0 | 461.0 | |
B150-35 | 1750.0 | 114.0 | 3.32 | 291.0 | 30.0 | 628.0 | |
B150-60 | 1750.0 | 114.0 | 5.94 | 486.0 | 37.0 | 1138.0 | |
B200-16 | 2250.0 | 114.0 | 1.78 | 266.0 | 28.0 | 373.0 | |
B200-35 | 2320.0 | 114.0 | 3.31 | 291.0 | 24.0 | 535.0 | |
B200-60 | 2250.0 | 114.0 | 6.14 | 486.0 | 28.0 | 1000.0 | |
B250-16 | 2750.0 | 114.0 | 1.72 | 266.0 | 36.0 | 353.0 | |
B250-35 | 2750.0 | 114.0 | 3.41 | 291.0 | 36.0 | 569.0 | |
B250-45 | 2750.0 | 114.0 | 4.49 | 332.0 | 31.0 | 657.0 | |
B250-60 | 2750.0 | 114.0 | 6.11 | 486.0 | 33.0 | 941.0 | |
Bergmann [70] | RU11 | 1000.0 | 323.9 | 5.60 | 443.9 | 92.3 | 11,481.0 |
RU14 | 4000.0 | 323.9 | 5.60 | 478.0 | 92.3 | 10,401.0 | |
Matsui and Tsuida [71] | C4-0 | 661.0 | 165.2 | 4.50 | 413.9 | 40.9 | 1562.2 |
C8-0 | 1322.0 | 165.2 | 4.50 | 413.9 | 40.9 | 1412.2 | |
C12-0 | 1982.0 | 165.2 | 4.50 | 413.9 | 40.9 | 1372.0 | |
C18-0 | 2974.0 | 165.2 | 4.50 | 413.9 | 40.9 | 1147.4 | |
C24-0 | 3965.0 | 165.2 | 4.50 | 413.9 | 40.9 | 1018.9 | |
O’Shea and Bridge [72] | R12CF1 | 662.0 | 190.0 | 1.11 | 203.1 | 110.3 | 3030.0 |
R12CF2 | 656.0 | 190.0 | 1.11 | 203.1 | 110.3 | 2940.0 | |
R12CF3 | 662.0 | 190.0 | 1.11 | 203.1 | 110.3 | 3140.0 | |
R12CF4 | 662.0 | 190.0 | 1.11 | 203.1 | 94.7 | 2462.0 | |
R12CF5 | 664.0 | 190.0 | 1.11 | 203.1 | 110.3 | 3055.0 | |
R12CF7 | 660.0 | 190.0 | 1.11 | 203.1 | 110.3 | 3000.0 | |
Schneider [73] | C1 | 635 | 140.8 | 3 | 285 | 28.18 | 881 |
C2 | 635 | 141.4 | 6.5 | 313 | 23.805 | 1825 | |
C3 | 635 | 140 | 6.68 | 537 | 28.18 | 2715 | |
Tan et al. [74] | A1-1 | 438.0 | 125.0 | 1.00 | 232.0 | 84.7 | 1275.0 |
A1-2 | 438.0 | 125.0 | 1.00 | 232.0 | 84.7 | 1239.0 | |
A2-1 | 445.0 | 127.0 | 2.00 | 258.0 | 84.7 | 1491.0 | |
A2-2 | 445.0 | 127.0 | 2.00 | 258.0 | 84.7 | 1339.0 | |
A3-1 | 465.0 | 133.0 | 3.50 | 352.0 | 84.7 | 1995.0 | |
A3-2 | 465.0 | 133.0 | 3.50 | 352.0 | 84.7 | 1991.0 | |
A3-3 | 465.0 | 133.0 | 3.50 | 352.0 | 84.7 | 1962.0 | |
A4-1 | 465.0 | 133.0 | 4.70 | 352.0 | 84.7 | 2273.0 | |
A4-2 | 465.0 | 133.0 | 4.70 | 352.0 | 84.7 | 2158.0 | |
A4-3 | 465.0 | 133.0 | 4.70 | 352.0 | 84.7 | 2253.0 | |
A5-1 | 445.0 | 127.0 | 7.00 | 429.0 | 84.7 | 3404.0 | |
A5-2 | 445.0 | 127.0 | 7.00 | 429.0 | 84.7 | 3370.0 | |
A5-3 | 445.0 | 127.0 | 7.00 | 429.0 | 84.7 | 3364.0 | |
B-1 | 378.0 | 108.0 | 4.50 | 358.0 | 77.4 | 1535.0 | |
B-2 | 378.0 | 108.0 | 4.50 | 358.0 | 77.4 | 1578.0 | |
B-3 | 378.0 | 108.0 | 4.50 | 358.0 | 77.4 | 1518.0 | |
Kilpatrick and Rangan [75] | SC-38 | 305.7 | 101.9 | 3.00 | 371.0 | 51.3 | 523.0 |
Yamamoto et al. [76] | C10A-2A-1 | 304.2 | 101.4 | 3.03 | 371.0 | 23.2 | 660.0 |
C10A-2A-2 | 305.7 | 101.9 | 3.03 | 371.0 | 23.2 | 649.0 | |
C10A-2A-3 | 305.4 | 101.8 | 3.03 | 371.0 | 23.2 | 682.0 | |
C20A-2A | 649.2 | 216.4 | 6.61 | 452.0 | 24.3 | 3568.0 | |
C30A-2A | 954.9 | 318.3 | 10.36 | 331.0 | 24.2 | 6565.0 | |
C10A-3A-1 | 305.1 | 101.7 | 3.03 | 371.0 | 40.2 | 800.0 | |
C10A-3A-2 | 303.9 | 101.3 | 3.03 | 371.0 | 40.2 | 742.0 | |
C20A-3A | 649.2 | 216.4 | 6.61 | 452.0 | 38.3 | 4023.0 | |
C30A-3A | 954.9 | 318.3 | 10.36 | 331.0 | 39.3 | 7933.0 | |
C10A-4A-1 | 305.7 | 101.9 | 3.03 | 371.0 | 51.3 | 877.0 | |
C10A-4A-2 | 304.5 | 101.5 | 3.03 | 371.0 | 51.3 | 862.0 | |
C20A-4A | 649.2 | 216.4 | 6.61 | 452.0 | 46.8 | 4214.0 | |
C30A-4A | 955.5 | 318.5 | 10.36 | 331.0 | 52.5 | 8289.0 | |
O’Shea and Bridge [77] | S30CS50B | 580.5 | 165.0 | 2.82 | 363.3 | 48.3 | 1662.0 |
S20CS50A | 663.5 | 190.0 | 1.94 | 256.4 | 41.0 | 1678.0 | |
S16CS50B | 664.5 | 190.0 | 1.52 | 306.1 | 48.3 | 1695.0 | |
S12CS50A | 664.5 | 190.0 | 1.13 | 185.7 | 41.0 | 1377.0 | |
S10CS50A | 659.0 | 190.0 | 0.86 | 210.7 | 41.0 | 1350.0 | |
S30CS80A | 580.5 | 165.0 | 2.82 | 363.3 | 80.2 | 2295.0 | |
S20CS80B | 663.5 | 190.0 | 1.94 | 256.4 | 74.7 | 2592.0 | |
S16CS80A | 663.5 | 190.0 | 1.52 | 306.1 | 80.2 | 2602.0 | |
S12CS80A | 662.5 | 190.0 | 1.13 | 185.7 | 80.2 | 2295.0 | |
S10CS80B | 663.5 | 190.0 | 0.86 | 210.7 | 74.7 | 2451.0 | |
S30CS10A | 577.5 | 165.0 | 2.82 | 363.3 | 108.0 | 2673.0 | |
S20CS10A | 660.0 | 190.0 | 1.94 | 256.4 | 108.0 | 3360.0 | |
S16CS10A | 661.5 | 190.0 | 1.52 | 306.1 | 108.0 | 3260.0 | |
S12CS10A | 660.0 | 190.0 | 1.13 | 185.7 | 108.0 | 3058.0 | |
S10CS10A | 662.0 | 190.0 | 0.86 | 210.7 | 108.0 | 3070.0 | |
Han and Yan [78] | SC154-1 | 4158.0 | 108.0 | 4.50 | 348.1 | 31.8 | 342.0 |
SC154-2 | 4158.0 | 108.0 | 4.50 | 348.1 | 31.8 | 292.0 | |
SC154-3 | 4158.0 | 108.0 | 4.50 | 348.1 | 46.8 | 298.0 | |
SC154-4 | 4158.0 | 108.0 | 4.50 | 348.1 | 46.8 | 280.0 | |
SC149-1 | 4023.0 | 108.0 | 4.50 | 348.1 | 46.8 | 318.0 | |
SC149-2 | 4023.0 | 108.0 | 4.50 | 348.1 | 46.8 | 320.0 | |
SC141-1 | 3807.0 | 108.0 | 4.50 | 348.1 | 31.8 | 350.0 | |
SC141-2 | 3807.0 | 108.0 | 4.50 | 348.1 | 31.8 | 370.0 | |
SC130-1 | 3510.0 | 108.0 | 4.50 | 348.1 | 31.8 | 400.0 | |
SC130-2 | 3510.0 | 108.0 | 4.50 | 348.1 | 31.8 | 390.0 | |
SC130-3 | 3510.0 | 108.0 | 4.50 | 348.1 | 46.8 | 440.0 | |
Johansson and Gylltoft [79] | SFE | 450.0 | 157.7 | 2.10 | 286.0 | 18.7 | 2150.0 |
Chen and Hikosaka [80] | A1 | 299.3 | 114.5 | 3.80 | 343.0 | 57.6 | 2989.0 |
B1 | 300.0 | 114.3 | 3.80 | 343.0 | 57.6 | 1930.6 | |
C1 | 2475.0 | 165.0 | 4.70 | 355.0 | 33.4 | 1979.6 | |
Han and Yao [81] | S-1 | 360.0 | 120.0 | 2.65 | 340.0 | 20.1 | 640.0 |
S-3 | 360.0 | 120.0 | 2.65 | 340.0 | 36.0 | 816.0 | |
L-2 | 1400.0 | 120.0 | 2.65 | 340.0 | 36.0 | 769.0 | |
Uenaka et al. [82] | t10-000 | 450.0 | 158.7 | 0.90 | 221.0 | 18.7 | 699.7 |
t16-000 | 450.0 | 157.5 | 1.50 | 308.0 | 18.7 | 815.4 | |
t23-000 | 450.0 | 157.7 | 2.14 | 286.0 | 18.7 | 907.5 | |
Giakoumelis and Lam [8] | C3 | 300.0 | 114.4 | 3.98 | 343.0 | 31.4 | 948.0 |
C4 | 300.0 | 114.6 | 3.99 | 343.0 | 93.6 | 1308.0 | |
C5 | 300.0 | 114.4 | 3.82 | 343.0 | 34.7 | 929.0 | |
C6 | 300.0 | 114.3 | 3.93 | 343.0 | 97.2 | 1359.0 | |
C7 | 300.5 | 114.9 | 4.91 | 365.0 | 34.7 | 1380.0 | |
C8 | 300.0 | 115.0 | 4.92 | 365.0 | 104.9 | 1787.0 | |
C9 | 300.5 | 115.0 | 5.02 | 365.0 | 57.6 | 1413.0 | |
C10 | 299.3 | 114.5 | 3.75 | 343.0 | 57.6 | 1038.0 | |
C11 | 300.0 | 114.3 | 3.75 | 343.0 | 57.6 | 1067.0 | |
C12 | 300.0 | 114.3 | 3.85 | 343.0 | 31.9 | 998.0 | |
C13 | 300.5 | 114.1 | 3.85 | 343.0 | 31.9 | 948.0 | |
C14 | 300.0 | 114.5 | 3.84 | 343.0 | 98.9 | 1359.0 | |
C15 | 299.5 | 114.4 | 3.85 | 343.0 | 98.9 | 1182.0 | |
Ghannam et al. [83] | C11-N | 2475.0 | 165.0 | 4.70 | 355.0 | 33.4 | 1058.0 |
C12-N | 2475.0 | 165.0 | 4.70 | 355.0 | 33.4 | 1037.0 | |
C13-LW | 2475.0 | 165.0 | 4.70 | 355.0 | 10.0 | 800.0 | |
C14-LW | 2475.0 | 165.0 | 4.70 | 355.0 | 10.0 | 834.0 | |
C16-N | 2200.0 | 110.0 | 1.90 | 350.0 | 33.4 | 437.0 | |
C17-N | 2200.0 | 110.0 | 1.90 | 350.0 | 33.4 | 368.0 | |
C18-N | 2200.0 | 110.0 | 1.90 | 350.0 | 33.4 | 355.0 | |
C19-N | 2200.0 | 110.0 | 1.90 | 350.0 | 33.4 | 374.0 | |
C22-LW | 2200.0 | 110.0 | 1.90 | 350.0 | 10.0 | 269.0 | |
C23-LW | 2200.0 | 110.0 | 1.90 | 350.0 | 10.0 | 252.0 | |
C24-LW | 2200.0 | 110.0 | 1.90 | 350.0 | 10.0 | 211.0 | |
C25-LW | 2200.0 | 110.0 | 1.90 | 350.0 | 10.0 | 219.0 | |
Sakino et al. [84] | CC4-A-2 | 447.0 | 149.0 | 2.96 | 308.0 | 25.4 | 941.0 |
CC4-A-4-1 | 447.0 | 149.0 | 2.96 | 308.0 | 40.5 | 1064.0 | |
CC4-A-4-2 | 447.0 | 149.0 | 2.96 | 308.0 | 40.5 | 1080.0 | |
CC4-A-8 | 447.0 | 149.0 | 2.96 | 308.0 | 77.0 | 1781.0 | |
CC4-C-2 | 903.0 | 301.0 | 2.96 | 279.0 | 25.4 | 2382.0 | |
CC4-C-4-1 | 900.0 | 300.0 | 2.96 | 279.0 | 41.1 | 3277.0 | |
CC4-C-4-2 | 900.0 | 300.0 | 2.96 | 279.0 | 41.1 | 3152.0 | |
CC4-C-8 | 903.0 | 301.0 | 2.96 | 279.0 | 80.3 | 5540.0 | |
CC4-D-2 | 1350.0 | 450.0 | 2.96 | 279.0 | 25.4 | 4415.0 | |
CC4-D-4-1 | 1350.0 | 450.0 | 2.96 | 279.0 | 41.1 | 6870.0 | |
CC4-D-4-2 | 1350.0 | 450.0 | 2.96 | 279.0 | 41.1 | 6985.0 | |
CC4-D-8 | 1350.0 | 450.0 | 2.96 | 279.0 | 85.1 | 11,665.0 | |
CC6-A-2 | 366.0 | 122.0 | 4.54 | 576.0 | 25.4 | 1509.0 | |
CC6-A-4-1 | 366.0 | 122.0 | 4.54 | 576.0 | 40.5 | 1657.0 | |
CC6-A-4-2 | 366.0 | 122.0 | 4.54 | 576.0 | 40.5 | 1663.0 | |
CC6-A-8 | 366.0 | 122.0 | 4.54 | 576.0 | 77.0 | 2100.0 | |
CC6-C-2 | 717.0 | 239.0 | 4.54 | 507.0 | 25.4 | 3035.0 | |
CC6-C-4-1 | 714.0 | 238.0 | 4.54 | 507.0 | 40.5 | 3583.0 | |
CC6-C-4-2 | 714.0 | 238.0 | 4.54 | 507.0 | 40.5 | 3647.0 | |
CC6-C-8 | 714.0 | 238.0 | 4.54 | 507.0 | 77.0 | 5578.0 | |
CC6-D-2 | 1083.0 | 361.0 | 4.54 | 525.0 | 25.4 | 5633.0 | |
CC6-D-4-1 | 1083.0 | 361.0 | 4.54 | 525.0 | 41.1 | 7260.0 | |
CC6-D-4-2 | 1080.0 | 360.0 | 4.54 | 525.0 | 41.1 | 7045.0 | |
CC6-D-8 | 1080.0 | 360.0 | 4.54 | 525.0 | 85.1 | 11,505.0 | |
Han and Yao [85] | scsc1-1 | 300.0 | 100.0 | 3.00 | 303.5 | 58.5 | 708.0 |
scsc1-2 | 300.0 | 100.0 | 3.00 | 303.5 | 58.5 | 820.0 | |
sch1-1 | 300.0 | 100.0 | 3.00 | 303.5 | 58.5 | 766.0 | |
sch1-2 | 300.0 | 100.0 | 3.00 | 303.5 | 58.5 | 820.0 | |
scv1-1 | 300.0 | 100.0 | 3.00 | 303.5 | 58.5 | 780.0 | |
scv1-2 | 300.0 | 100.0 | 3.00 | 303.5 | 58.5 | 814.0 | |
scsc2-1 | 600.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2320.0 | |
scsc2-2 | 600.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2330.0 | |
sch2-1 | 600.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2160.0 | |
sch2-2 | 600.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2160.0 | |
scv2-1 | 600.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2383.0 | |
scv2-2 | 600.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2256.0 | |
lcsc1-1 | 2000.0 | 200.0 | 3.00 | 303.5 | 58.5 | 1830.0 | |
lcsc1-2 | 2000.0 | 200.0 | 3.00 | 303.5 | 58.5 | 1806.0 | |
lch1-1 | 2000.0 | 200.0 | 3.00 | 303.5 | 58.5 | 1882.0 | |
lch1-2 | 2000.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2060.0 | |
lcv1 | 2000.0 | 200.0 | 3.00 | 303.5 | 58.5 | 2115.0 | |
SZ5S4A1a | 650.0 | 219.0 | 4.78 | 350.0 | 50.5 | 3400.0 | |
SZ5S4A1b | 650.0 | 219.0 | 4.72 | 350.0 | 50.5 | 3350.0 | |
SZ5S3A1 | 650.0 | 219.0 | 4.75 | 350.0 | 42.6 | 3150.0 | |
SZ3S6A1 | 510.0 | 165.0 | 2.73 | 350.0 | 77.2 | 2080.0 | |
SZ3S4A1 | 510.0 | 165.0 | 2.72 | 350.0 | 57.0 | 1750.0 | |
SZ3C4A1 | 510.0 | 165.0 | 2.75 | 350.0 | 46.3 | 1560.0 | |
C30-1 | 300.0 | 100.0 | 1.90 | 404.0 | 121.6 | 1125.0 | |
C30-2 | 300.0 | 100.0 | 1.90 | 404.0 | 121.6 | 1085.0 | |
C30-3 | 300.0 | 100.0 | 1.90 | 404.0 | 121.6 | 1100.0 | |
C30-4 | 300.0 | 100.0 | 1.90 | 404.0 | 121.6 | 1170.0 | |
C90-1 | 900.0 | 100.0 | 1.90 | 404.0 | 121.6 | 1065.0 | |
C90-2 | 900.0 | 100.0 | 1.90 | 404.0 | 121.6 | 980.0 | |
C150-1 | 1500.0 | 100.0 | 1.90 | 404.0 | 121.6 | 907.0 | |
C150-2 | 1500.0 | 100.0 | 1.90 | 404.0 | 121.6 | 760.0 | |
C300-1 | 3000.0 | 100.0 | 1.90 | 404.0 | 121.6 | 288.0 | |
C300-2 | 3000.0 | 100.0 | 1.90 | 404.0 | 121.6 | 317.5 | |
Lee et al. [88] | O49C36_30 | 2000.0 | 114.9 | 3.00 | 354.1 | 40.3 | 6888.0 |
O57C30_30 | 2500.0 | 114.9 | 3.00 | 354.1 | 40.3 | 9823.0 | |
Yang and Han [89] | Ccfst-1 | 1000.0 | 127.3 | 3.00 | 345.2 | 40.3 | 1462.0 |
Ccfst-2 | 1500.0 | 127.3 | 3.00 | 345.2 | 40.3 | 1489.0 | |
Dundu [90] | S1-1 | 1000.0 | 114.9 | 3.00 | 354.1 | 40.3 | 806.4 |
S1-2 | 1500.0 | 114.9 | 3.00 | 354.1 | 40.3 | 688.2 | |
S1-3 | 2000.0 | 114.9 | 3.00 | 354.1 | 40.3 | 632.2 | |
S1-4 | 2500.0 | 114.9 | 3.00 | 354.1 | 40.3 | 566.1 | |
S1-5 | 1000.0 | 127.3 | 3.00 | 345.2 | 40.3 | 912.1 | |
S1-6 | 1500.0 | 127.3 | 3.00 | 345.2 | 40.3 | 848.5 | |
S1-7 | 2000.0 | 127.3 | 3.00 | 345.2 | 40.3 | 715.8 | |
S1-8 | 2500.0 | 127.3 | 3.00 | 345.2 | 40.3 | 638.8 | |
S1-9 | 1000.0 | 139.2 | 3.00 | 362.0 | 40.3 | 1059.8 | |
S1-10 | 1500.0 | 139.2 | 3.00 | 362.0 | 40.3 | 941.9 | |
S1-11 | 2000.0 | 139.2 | 3.00 | 362.0 | 40.3 | 868.3 | |
S1-12 | 2500.0 | 139.2 | 3.00 | 362.0 | 40.3 | 750.7 | |
S2-1 | 1000.0 | 152.4 | 3.00 | 488.2 | 30.9 | 1463.3 | |
S2-2 | 1500.0 | 152.4 | 3.00 | 488.2 | 30.9 | 1209.1 | |
S2-3 | 2000.0 | 152.4 | 3.00 | 488.2 | 30.9 | 1167.3 | |
S2-4 | 2500.0 | 152.4 | 3.00 | 394.3 | 30.9 | 968.9 | |
S2-5 | 1000.0 | 165.1 | 3.00 | 438.2 | 30.9 | 1549.5 | |
S2-6 | 1500.0 | 165.1 | 3.00 | 438.2 | 30.9 | 1338.0 | |
S2-7 | 2000.0 | 165.1 | 3.00 | 438.2 | 30.9 | 1234.5 | |
S2-8 | 2500.0 | 165.1 | 3.00 | 430.3 | 30.9 | 1232.0 | |
S2-9 | 1000.0 | 193.7 | 3.00 | 398.8 | 30.9 | 1999.6 | |
S2-10 | 1500.0 | 193.7 | 3.50 | 398.8 | 30.9 | 1817.1 | |
S2-11 | 2000.0 | 193.7 | 3.50 | 398.8 | 30.9 | 1796.3 | |
S2-12 | 2500.0 | 193.7 | 3.50 | 392.2 | 30.9 | 1620.8 | |
Portolés et al. [91] | 1 | 2135.0 | 159.0 | 6.00 | 394.0 | 37.7 | 1414.0 |
13 | 2135.0 | 159.0 | 6.00 | 457.0 | 120.1 | 2792.0 | |
14.0 | 2135.0 | 159.0 | 6.00 | 487.0 | 116.0 | 2193.0 | |
Chang et al. [92] | CST-16 | 900.0 | 114.3 | 2.70 | 235.0 | 107.2 | 666.6 |
CST-17 | 900.0 | 114.3 | 2.70 | 235.0 | 56.2 | 701.9 | |
CST-18 | 900.0 | 114.3 | 2.70 | 235.0 | 66.8 | 1011.0 | |
Ekmekyapar and Al-Eliwi [7] | 114.3-2.74-300-56 | 300.0 | 114.3 | 2.74 | 235.0 | 56.2 | 901.8 |
114.3-2.74-300-66 | 300.0 | 114.3 | 2.74 | 235.0 | 66.8 | 981.2 | |
114.3-2.74-300-107 | 300.0 | 114.3 | 2.74 | 235.0 | 107.2 | 1295.1 | |
114.3-5.90-300-56 | 300.0 | 114.3 | 5.90 | 355.0 | 56.2 | 1735.8 | |
114.3-5.90-300-66 | 300.0 | 114.3 | 5.90 | 355.0 | 66.8 | 1818.6 | |
114.3-5.90-300-107 | 300.0 | 114.3 | 5.90 | 355.0 | 107.2 | 1989.9 | |
114.3-2.74-600-56 | 600.0 | 114.3 | 2.74 | 235.0 | 56.2 | 947.8 | |
114.3-2.74-600-66 | 600.0 | 114.3 | 2.74 | 235.0 | 66.8 | 1031.9 | |
114.3-2.74-600-107 | 600.0 | 114.3 | 2.74 | 235.0 | 107.2 | 1296.6 | |
114.3-5.90-600-56 | 600.0 | 114.3 | 5.90 | 355.0 | 56.2 | 1723.2 | |
114.3-5.90-600-66 | 600.0 | 114.3 | 5.90 | 355.0 | 66.8 | 1810.9 | |
114.3-5.90-600-107 | 600.0 | 114.3 | 5.90 | 355.0 | 107.2 | 1968.1 | |
114.3-2.74-900-56 | 900.0 | 114.3 | 2.74 | 235.0 | 56.2 | 877.3 | |
114.3-2.74-900-66 | 900.0 | 114.3 | 2.74 | 235.0 | 66.8 | 983.5 | |
114.3-2.74-900-107 | 900.0 | 114.3 | 2.74 | 235.0 | 107.2 | 1233.2 | |
114.3-5.90-900-56 | 900.0 | 114.3 | 5.90 | 355.0 | 56.2 | 1592.5 | |
114.3-5.90-900-66 | 900.0 | 114.3 | 5.90 | 355.0 | 66.8 | 1713.3 | |
114.3-5.90-300-107 | 900.0 | 114.3 | 5.90 | 355.0 | 107.2 | 1907.3 | |
Ye et al. [6] | CFST-1 | 360.0 | 120.0 | 2.70 | 340.0 | 20.1 | 1008.0 |
CFST-2 | 360.0 | 120.0 | 2.70 | 340.0 | 36.0 | 996.0 | |
Xiong et al. [4] | C12 | 600.0 | 219.1 | 10.00 | 381.0 | 51.6 | 5241.0 |
C9 | 600.0 | 219.1 | 5.00 | 380.0 | 51.6 | 3118.0 | |
Average | 1140.6 | 157.3 | 14.9 | 355.5 | 54.3 | 1722.5 | |
Standard deviation | 888.2 | 154.0 | 150.4 | 154.5 | 149.6 | 1768.4 |
Rights and permissions
About this article
Cite this article
Luat, NV., Shin, J. & Lee, K. Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns. Engineering with Computers 38, 1421–1450 (2022). https://doi.org/10.1007/s00366-020-01115-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-020-01115-7