Skip to main content

Advertisement

Log in

Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The goal of this study was to investigate a novel approach of predicting the ultimate capacity of axially loaded circular concrete-filled steel tube (CCFST) columns. A hybrid intelligent system, namely GAP-BART, was developed based on the Bayesian additive regression tree (BART) combining with three nature-inspired optimization algorithms such as Genetic Algorithm (GA), Artificial Bee Colony (ABC), and Particle Swarm Optimization (PSO), and then applied. Three sub-hybrid models of the system were built, abbreviated as G-BART, A-BART, and P-BART, respectively, using 504 experimental data collected from published research. The compiled database covered five input variables, including the diameter of the circular cross-section—section (D), the wall thickness of the steel tube (t), the length of the column (L), the compressive strength of the concrete (\(f_{\text{c}}^{'}\)), and the yield strength of the steel tube (fy). The coefficient of determination (R2) values of (0.9971, 0.9982, and 0.9986) and (0.9891, 0.9923 and 0.9931) were achieved for training and testing of G-BART, A-BART, and P-BART models, respectively. The P-BART model performed the lowest RMSE and MAE values for the training and testing set of (66.85 kN and 49.60 kN) and (141.24 kN and 102.04 kN), respectively. These results indicated that although the proposed models were able to estimate ultimate axial capacity with high accuracy, the P-BART model had the best performance among them. For benchmarking, the obtained results were validated against several mathematical approaches as well as other AI techniques (MARS, ANN). The findings of the comparative analysis clearly showed superior ability to predict the CFST ultimate axial capacity relative to the benchmark models. The relative importance of each predictor was investigated to find the most significant input variables. The results confirmed that the hybrid GAP-BART system can serve as a reliable and accurate tool for the design of CCFST columns and to predict their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Han L-HH, Li W, Bjorhovde R (2014) Developments and advanced applications of concrete-filled steel tubular (CFST) structures: members. J Constr Steel Res 100:211–228. https://doi.org/10.1016/j.jcsr.2014.04.016

    Article  Google Scholar 

  2. Lu ZH, Zhao YG (2010) Suggested empirical models for the axial capacity of circular CFT stub columns. J Constr Steel Res 66:850–862. https://doi.org/10.1016/j.jcsr.2009.12.014

    Article  Google Scholar 

  3. Zeghiche J, Chaoui K (2005) An experimental behaviour of concrete-filled steel tubular columns. J Constr Steel Res 61:53–66. https://doi.org/10.1016/j.jcsr.2004.06.006

    Article  Google Scholar 

  4. Xiong MX, Xiong DX, Liew JYR (2017) Axial performance of short concrete filled steel tubes with high- and ultra-high- strength materials. Eng Struct 136:494–510. https://doi.org/10.1016/j.engstruct.2017.01.037

    Article  Google Scholar 

  5. Xiong MX, Xiong DX, Liew JYR (2017) Behaviour of steel tubular members infilled with ultra high strength concrete. J Constr Steel Res 138:168–183. https://doi.org/10.1016/j.jcsr.2017.07.001

    Article  Google Scholar 

  6. Ye Y, Han LH, Sheehan T, Guo ZX (2016) Concrete-filled bimetallic tubes under axial compression: experimental investigation. Thin-Walled Struct 108:321–332. https://doi.org/10.1016/j.tws.2016.09.004

    Article  Google Scholar 

  7. Ekmekyapar T, Al-Eliwi BJM (2016) Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Struct 105:220–230. https://doi.org/10.1016/j.tws.2016.04.004

    Article  Google Scholar 

  8. Giakoumelis G, Lam D (2004) Axial capacity of circular concrete-filled tube columns. J Constr Steel Res 60:1049–1068. https://doi.org/10.1016/j.jcsr.2003.10.001

    Article  Google Scholar 

  9. Beck AT, de Oliveira WLA, De Nardim S, ElDebs ALHC (2009) Reliability-based evaluation of design code provisions for circular concrete-filled steel columns. Eng Struct 31:2299–2308. https://doi.org/10.1016/j.engstruct.2009.05.004

    Article  Google Scholar 

  10. Li N, Lu YY, Lisss S, Liang HJ (2015) Statistical-based evaluation of design codes for circular concrete-filled steel tube columns. Steel Compos Struct 18:519–546. https://doi.org/10.12989/scs.2015.18.2.519

    Article  Google Scholar 

  11. Han LH, An YF (2014) Performance of concrete-encased CFST stub columns under axial compression. J Constr Steel Res 93:62–76. https://doi.org/10.1016/j.jcsr.2013.10.019

    Article  Google Scholar 

  12. Evirgen B, Tuncan A, Taskin K (2014) Structural behavior of concrete filled steel tubular sections (CFT/CFSt) under axial compression. Thin-Walled Struct 80:46–56. https://doi.org/10.1016/j.tws.2014.02.022

    Article  Google Scholar 

  13. Moon J, Kim JJ, Lee TH, Lee HE (2014) Prediction of axial load capacity of stub circular concrete-filled steel tube using fuzzy logic. J Constr Steel Res 101:184–191. https://doi.org/10.1016/j.jcsr.2014.05.011

    Article  Google Scholar 

  14. Güneyisi EM, Gültekin A, Mermerdaş K (2016) Ultimate capacity prediction of axially loaded CFST short columns. Int J Steel Struct 16:99–114. https://doi.org/10.1007/s13296-016-3009-9

    Article  Google Scholar 

  15. Ahmadi M, Naderpour H, Kheyroddin A (2017) ANN model for predicting the compressive strength of circular steel-confined concrete. Int J Civ Eng 15:213–221. https://doi.org/10.1007/s40999-016-0096-0

    Article  Google Scholar 

  16. Ren Q, Li M, Zhang M et al (2019) Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm. Appl Sci. https://doi.org/10.3390/app9142802

    Article  Google Scholar 

  17. Sarir P, Shen SL, Wang ZF et al (2019) Optimum model for bearing capacity of concrete-steel columns with AI technology via incorporating the algorithms of IWO and ABC. Eng Comput. https://doi.org/10.1007/s00366-019-00855-5

    Article  Google Scholar 

  18. Ahmadi M, Naderpour H, Kheyroddin A (2014) Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Arch Civ Mech Eng 14:510–517. https://doi.org/10.1016/j.acme.2014.01.006

    Article  Google Scholar 

  19. Luat NV, Lee J, Lee DH, Lee K (2020) GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading. Comput Concr 25:1–4. https://doi.org/10.12989/cac.2020.25.1.001

    Article  Google Scholar 

  20. ACI Committee 318 (2014) Building code requirements for structural concrete and commentary (ACI318-14). Concrete Institute, Farmington Hills

    Google Scholar 

  21. AISC Committee (2010) Specification for Structural Steel Buildings (ANSI/AISC 360-10). American Institute of Steel Construction, Chicago

    Google Scholar 

  22. European Committee for Standardization (2004) Eurocode-4: design of composite steel and concrete structures-Part 1-1: general rules and rules for buildings. London, UK

  23. ZB Wang, Tao Z, Han LH et al (2017) Strength, stiffness and ductility of concrete-filled steel columns under axial compression. Eng Struct 135:209–221. https://doi.org/10.1016/j.engstruct.2016.12.049

    Article  Google Scholar 

  24. Luat NV, Woo S, Han SW, Lee K (2020) Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models—a new approach. Steel Compos Struct (Under review)

  25. Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    MathSciNet  MATH  Google Scholar 

  26. Bui DK, Nguyen TN, Ngo TD, Nguyen-Xuan H (2019) An artificial neural network (ANN) expert system enhanced with the electromagnetism-based firefly algorithm (EFA) for predicting the energy consumption in buildings. Energy 190:116370. https://doi.org/10.1016/j.energy.2019.116370

    Article  Google Scholar 

  27. Luat N-V, Lee K, Thai DK (2020) Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils. Geomech Eng 20:385–397. https://doi.org/10.12989/gae.2020.20.5.385

    Article  Google Scholar 

  28. Chipman HA, George EI, McCulloch RE (2012) BART: Bayesian additive regression trees. Ann Appl Stat 6:266–298. https://doi.org/10.1214/09-AOAS285

    Article  MathSciNet  MATH  Google Scholar 

  29. Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. U Michigan Press, Oxford

    MATH  Google Scholar 

  30. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston

    MATH  Google Scholar 

  31. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, vol 4, pp 1942–1948

  32. Kaveh A, Mahdavi VR (2015) A hybrid CBO-PSO algorithm for optimal design of truss structures with dynamic constraints. Appl Soft Comput J 34:260–273. https://doi.org/10.1016/j.asoc.2015.05.010

    Article  Google Scholar 

  33. Razmara Shooli A, Vosoughi AR, Banan MR (2019) A mixed GA-PSO-based approach for performance-based design optimization of 2D reinforced concrete special moment-resisting frames. Appl Soft Comput 85:105843. https://doi.org/10.1016/j.asoc.2019.105843

    Article  Google Scholar 

  34. Tian H, Shu J, Han L (2019) The effect of ICA and PSO on ANN results in approximating elasticity modulus of rock material. Eng Comput 35:305–314. https://doi.org/10.1007/s00366-018-0600-z

    Article  Google Scholar 

  35. Yang X-S (2014) Nature-inspired optimization algorithms. Elsevier, Oxford

    MATH  Google Scholar 

  36. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department

  37. Das SK, Biswal RK, Sivakugan N, Das B (2011) Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ Earth Sci 64:201–210. https://doi.org/10.1007/s12665-010-0839-1

    Article  Google Scholar 

  38. Gomes GF, de Almeida FA, Junqueira DM et al (2019) Optimized damage identification in CFRP plates by reduced mode shapes and GA-ANN methods. Eng Struct 181:111–123. https://doi.org/10.1016/j.engstruct.2018.11.081

    Article  Google Scholar 

  39. Moayedi H, Jahed Armaghani D (2018) Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Eng Comput 34:347–356. https://doi.org/10.1007/s00366-017-0545-7

    Article  Google Scholar 

  40. Kapelner A, Bleich J (2016) bartMachine: machine learning with bayesian additive regression trees. J Stat Softw. https://doi.org/10.18637/jss.v070.i04

    Article  MATH  Google Scholar 

  41. Scrucca L (2017) On some extensions to GA package: hybrid optimisation, parallelisation and islands evolution. R J 9:187–206. https://doi.org/10.32614/RJ-2017-008

    Article  Google Scholar 

  42. Cheng M-Y, Cao M-T (2014) Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams. Eng Appl Artif Intell 28:86–96. https://doi.org/10.1016/j.engappai.2013.11.001

    Article  Google Scholar 

  43. Bendtsen C (2011) PSO: particle swarm optimization. https://cran.r-project.org/package=pso

  44. Ren Y, Bai G (2010) Determination of optimal SVM parameters by using GA/PSO. J Comput 5:1160–1168. https://doi.org/10.4304/jcp.5.8.1160-1168

    Article  Google Scholar 

  45. Koopialipoor M, Fallah A, Armaghani DJ et al (2019) Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Eng Comput 35:243–256. https://doi.org/10.1007/s00366-018-0596-4

    Article  Google Scholar 

  46. Luat NV, Nguyen VQ, Lee S et al (2020) An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils. Geoemech Eng 21:583–598. https://doi.org/10.12989/gae.2020.21.6.583

    Article  Google Scholar 

  47. Vega Yon G, Muñoz E (2017) {ABCoptim}: an implementation of the artificial bee colony ({ABC}) algorithm. https://github.com/gvegayon/ABCoptim

  48. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106:7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  49. Alavi AH, Gandomi AH, Mousavi M, Mollahasani A (2010) High-precision modeling of uplift capacity of suction caissons using a hybrid computational method. Geomech Eng 2:253–280. https://doi.org/10.12989/gae.2010.2.4.253

    Article  Google Scholar 

  50. Bui DK, Nguyen T, Chou JS et al (2018) A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater 180:320–333. https://doi.org/10.1016/j.conbuildmat.2018.05.201

    Article  Google Scholar 

  51. Le-Duc T, Nguyen QH, Nguyen-Xuan H (2020) Balancing composite motion optimization. Inf Sci (Ny) 520:250–270. https://doi.org/10.1016/j.ins.2020.02.013

    Article  MathSciNet  Google Scholar 

  52. Klöppel V, Goder W (1957) Traglastversuche mit ausbetonierten Stahlrohren und Aufstellung einer Bemessungsformel. Der Stahlbau 26:1–10

    Google Scholar 

  53. Salani HJ, Sims JR (1964) Behavior of mortar filled steel tubes in compression. J Proc 61:1271–1284

    Google Scholar 

  54. Chapman JC, Neogi PK (1966) Research on concrete filled tubular columns. Imperial College, London

    Google Scholar 

  55. Gardner NJ, Jacobson ER (1967) Structural behavior of concrete filled steel tubes. ACI J Proc 64:404–413. https://doi.org/10.14359/7575

    Article  Google Scholar 

  56. Furlong RW (1967) Strength of steel-encased concrete beam columns. J Struct Div 93(5):113–124

    Article  Google Scholar 

  57. Gardner NJ (1968) Use of spiral welded steel tubes in pipe columns. ACI J Proc 65:937–942. https://doi.org/10.14359/7525

    Article  Google Scholar 

  58. Knowles RB, Park R (1969) Strength of concrete filled steel tubular columns. J Struct Div 95:2565–2588

    Article  Google Scholar 

  59. Guiaux P, Janss J (1970) Comportement au Flambement de Colonnes Constituees de Tubes en Acier Remplis de Beton. Brussels, Belgium

  60. Cai S, Jiao Z (1984) Behavior and ultimate strength of short concrete-filled steel tubular columns. J Build Struct 6:13–29

    Google Scholar 

  61. Cai SH, Gu WK (1985) Behavior and ultimate strength of long concrete-filled steel tubular columns. J Build Struct 6:32–40

    Google Scholar 

  62. Sakino K, Tomii M, Watanabe K (1985) Sustaining load capacity of plain concrete stub columns confined by circular steel tube. In: Proceedings 1st ASCCS internaional conference on steel-concrete composite structures. Harbin, China, pp 112–118

  63. Lin CY (1988) Axial capacity of concrete infilled cold-formed steel columns. In: Ninth international specialty conference on cold-formed steel structures. St. Louis, Missouri, USA, pp 443–457

  64. Masuo K, Adachi M, Kawabata K et al (1991) Buckling behavior of concrete filled circular steel tubular columns using light-weight concrete. In: Proceedings 3rd ASCCS international conference on composite construction. Fukuoka, Japan, pp 95–100

  65. Sakino K, Hayashi H (1991) Behavior of concrete filled steel tubular stub columns under concentric loading. In: Proceedings of 3rd international conference on steel-concrete composite structures. Fukuoka, Japan, pp 25–30

  66. Luksha LK, Nesterovich AP (1991) Strength of tubular concrete cylinders under combined loading. In: Proceedings of 3rd international conference on steel-concrete composite structures. Fukuoka, Japan, pp 67–71

  67. Kenny JR, Bruce DA, Bjorhovde R (1994) Removal of yield stress limitation for composite tubular columns. Eng J AISC 31:1–11

    Google Scholar 

  68. Prion HGL, Boehme J (1994) Beam-column behaviour of steel tubes filled with high strength concrete. Can J Civ Eng 21:207–218. https://doi.org/10.1139/l94-024

    Article  Google Scholar 

  69. Fujii K (1994) Structural and ultimate behavior of two types of mortar filled steel tubes in compression. In: Proceedings of the 4th ASCCS international conference. Košice, Slovakia, pp 194–197

  70. Bergmann R (1994) Load introduction in composite columns filled with high strength concrete. In: Tubular structures VI, proceedings of 6th international symposium on tubular structures. Melbourne, Australia, pp 373–380

  71. Matsui C, Tsuda K (1996) Strength and behavior of slender concrete filled steel tubular columns. In: Proceedings of the second international symposium on civil infrastructure systems. Hongkong, China

  72. O’Shea MD, Bridge RQ (1998) Tests on circular thin-walled steel tubes filled with very high strength concrete. Research report no. R754. Sydney, Australia

  73. Schneider SP (1998) Axially loaded concrete-filled steel tubes. J Struct Eng 124:1125–1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)

    Article  Google Scholar 

  74. Tan K, Pu X, Cai S (1999) Study on the mechanical properties of steel extra-high strength concrete encased in steel tubes. J Build Struct 20:10–15

    Google Scholar 

  75. Rangan AEK, Rangan BV (1999) Tests on high-strength concrete-filled steel tubular columns. ACI Struct J 96:268–274. https://doi.org/10.14359/618

    Article  Google Scholar 

  76. Yamamoto T, Kawaguchi J, Morino S (2000) Experimental study of scale effects on the compressive behavior of short concrete-filled steel tube columns. Compos Constr Steel Concr IV 40616:879–890. https://doi.org/10.1061/40616(281)76

    Article  Google Scholar 

  77. O’Shea MD, Bridge RQ (2000) Design of circular thin-walled concrete filled steel tubes. J Struct Eng 126:1295–1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)

    Article  Google Scholar 

  78. Han LH, Yan SZ (2000) experimental studies on the strength with high slenderness ratio concrete filled steel tubular column. In: Composite and hybrid structures, proceedings of the sixth asccs international conference on steel-concrete composite structures. Los Angeles, California, pp 419–425

  79. Mathias J, Kent G (2002) Mechanical behavior of circular steel-concrete composite stub columns. J Struct Eng 128:1073–1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)

    Article  Google Scholar 

  80. Chen B, Hikosaka H (2003) Eccentricity ratio effect on the behavior of eccentrically loaded CFST columns. In: Proceedings ASSCCA’03 international conference advances in structures (ASCCS-7). Sydney, Australia, pp 973–978

  81. Han LH, Yao GH (2003) Behaviour of concrete-filled hollow structural steel (HSS) columns with pre-load on the steel tubes. J Constr Steel Res 59:1455–1475. https://doi.org/10.1016/S0143-974X(03)00102-0

    Article  Google Scholar 

  82. Uenaka K, Hayami M, Kitoh H, Sonoda K (2003) Experimental study on concrete filled double tubular steel columns under axial loading. In: Proceedings ASSCCA’03 international conference advances in structures (ASCCS-7). Sydney, Australia, pp 877–882

  83. Ghannam S, Jawad YA, Hunaiti Y (2004) Failure of lightweight aggregate concrete-filled steel tubular columns. Steel Compos Struct 4:1–8. https://doi.org/10.12989/scs.2004.4.1.001

    Article  Google Scholar 

  84. Sakino K, Nakahara H, Morino S, Nishiyama I (2004) Behavior of centrally loaded concrete-filled steel-tube short columns. J Struct Eng 130:180–188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)

    Article  Google Scholar 

  85. Han LH, Yao GH (2004) Experimental behaviour of thin-walled hollow structural steel (HSS) columns filled with self-consolidating concrete (SCC). Thin-Walled Struct 42:1357–1377. https://doi.org/10.1016/j.tws.2004.03.016

    Article  Google Scholar 

  86. Yu Z, Ding FX, Cai CS (2007) Experimental behavior of circular concrete-filled steel tube stub columns. J Constr Steel Res 63:165–174. https://doi.org/10.1016/j.jcsr.2006.03.009

    Article  Google Scholar 

  87. Yu Q, Tao Z, Wu YX (2008) Experimental behaviour of high performance concrete-filled steel tubular columns. Thin-Walled Struct 46:362–370. https://doi.org/10.1016/j.tws.2007.10.001

    Article  Google Scholar 

  88. Lee S-H, Uy B, Kim S-H et al (2011) Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading. J Constr Steel Res 67:1–13. https://doi.org/10.1016/j.jcsr.2010.07.003

    Article  Google Scholar 

  89. Yang YF, Han LH (2012) Concrete filled steel tube (CFST) columns subjected to concentrically partial compression. Thin-Walled Struct 50:147–156. https://doi.org/10.1016/j.tws.2011.09.007

    Article  Google Scholar 

  90. Dundu M (2012) Compressive strength of circular concrete filled steel tube columns. Thin-Walled Struct 56:62–70. https://doi.org/10.1016/j.tws.2012.03.008

    Article  Google Scholar 

  91. Portolés JM, Romero ML, Bonet JL, Filippou FC (2011) Experimental study of high strength concrete-filled circular tubular columns under eccentric loading. J Constr Steel Res 67:623–633. https://doi.org/10.1016/j.jcsr.2010.11.017

    Article  Google Scholar 

  92. Chang X, Fu L, Zhao HB, Bin Zhang Y (2013) Behaviors of axially loaded circular concrete-filled steel tube (CFT) stub columns with notch in steel tubes. Thin-Walled Struct 73:273–280. https://doi.org/10.1016/j.tws.2013.08.018

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministry of Land, Infrastructure and Transport of Korean Government (Grant 20CTAP-C143093-03). The authors would like to express sincere gratitude for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kihak Lee.

Ethics declarations

Conflict of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Experimental data of CCFST columns under axially loaded used in this study

Appendix: Experimental data of CCFST columns under axially loaded used in this study

References

Specimen

L (mm)

D (mm)

t (mm)

\(f_{y}\) (MPa)

\(f_{\text{c}}^{ '}\) (MPa)

\(N_{\text{u}}\) (kN)

Klöppel and Goder [52]

7

1420.1

95.0

12.50

274.6

20.3

947.0

8

1420.1

95.0

12.75

272.6

20.3

937.7

9

1420.1

95.0

12.40

272.6

20.3

907.0

10

860.0

95.0

12.60

274.6

20.3

1017.8

11

860.0

95.0

12.70

272.6

20.3

1008.0

12

860.0

95.0

12.70

272.6

20.3

1033.8

14

1979.9

95.0

12.50

275.6

20.3

907.0

15

1979.9

95.0

12.60

279.5

20.3

916.8

41

860.0

95.0

3.66

326.5

25.0

656.1

42

860.0

95.0

3.68

386.4

25.0

686.4

43

860.0

95.0

3.40

335.4

25.0

656.1

44

1420.1

95.0

3.86

326.5

25.0

566.7

45

1420.1

95.0

3.91

386.4

25.0

605.8

46

1420.1

95.0

3.58

335.4

25.0

575.6

47

1979.9

95.0

3.76

326.5

25.0

536.5

48

1979.9

95.0

3.78

386.4

25.0

565.8

49

1979.9

95.0

3.51

335.4

25.0

487.5

63

2220.0

216.0

4.06

284.4

25.0

1023.1

64

2220.0

216.0

4.11

299.1

22.9

1834.4

65

2220.0

216.0

4.04

288.3

29.8

2289.1

66

2220.0

216.0

4.11

286.3

29.8

2238.8

69

2220.0

216.0

6.05

389.3

22.9

2461.6

70

2220.0

216.0

5.97

393.3

22.9

2421.2

71

2220.0

216.0

6.50

295.2

29.8

2803.7

72

2220.0

216.0

6.30

405.0

29.8

2932.3

73

1979.9

95.0

3.86

332.4

24.1

498.2

74

1979.9

95.0

3.40

337.4

24.1

472.8

75

1979.9

95.0

3.58

355.0

24.1

472.8

76

1979.9

95.0

3.73

326.5

24.1

412.8

83

1050.0

121.0

3.66

295.2

21.1

695.3

84

1050.0

121.0

3.73

327.6

21.1

746.4

85

1050.0

121.0

3.76

307.9

24.2

836.7

86

1050.0

121.0

3.99

326.5

24.2

867.0

89

1050.0

121.0

5.61

344.2

21.1

998.2

90

1050.0

121.0

5.41

343.2

21.1

1017.8

91

1050.0

121.0

5.46

330.5

24.2

1099.2

92

1050.0

121.0

5.56

321.6

24.2

1078.7

95

2310.1

121.0

3.71

295.2

21.1

640.5

96

2310.1

121.0

3.76

327.6

21.1

629.4

97

2310.1

121.0

3.71

307.9

24.2

695.3

98

2310.1

121.0

3.86

326.5

24.2

755.3

101

2310.1

121.0

5.69

344.2

21.1

786.4

102

2310.1

121.0

5.49

343.2

21.1

815.8

103

2310.1

121.0

5.64

330.5

24.2

873.6

104

2310.1

121.0

5.44

321.6

24.2

865.2

Salani and Sims [53]

22F

1524.0

38.1

2.77

524.0

17.9

107.6

23F

1524.0

38.1

2.77

524.0

17.9

121.0

24F

1524.0

38.1

2.77

524.0

17.9

106.8

51F

1524.0

38.1

2.77

524.0

27.8

113.0

52F

1524.0

38.1

2.77

524.0

27.8

106.8

28F

1524.0

50.8

1.65

524.0

21.3

115.2

29F

1524.0

50.8

1.65

524.0

21.3

114.3

30F

1524.0

50.8

1.65

524.0

27.9

120.5

71F

1524.0

69.9

1.24

524.0

27.9

230.9

40F

1524.0

76.2

1.65

524.0

20.8

226.4

41F

1524.0

76.2

1.65

524.0

20.8

245.1

42F

1524.0

76.2

1.65

524.0

27.2

320.3

Chapman and Neogi [54]

A1

1879.6

355.6

11.18

355.1

38.1

11,458.6

A4

1879.6

355.6

11.18

355.1

32.8

10,711.3

A5

1879.6

355.6

4.72

276.5

21.0

3517.2

A6

2082.8

355.6

7.98

355.1

23.4

7433.0

B1

711.2

127.3

1.63

370.6

66.2

1285.5

B1X

711.2

127.3

1.63

328.9

66.2

1285.5

B2

711.2

127.1

2.95

370.6

66.2

1305.6

B2X

711.2

127.1

2.95

328.9

66.2

1305.6

DF1

406.4

140.1

9.68

265.4

27.6

2949.2

DF1X

406.4

140.1

9.68

268.9

28.0

2949.2

DF2

406.4

140.4

4.93

288.9

32.7

1823.8

DF2X

406.4

140.4

4.93

297.9

32.7

1823.8

SC1

812.8

168.2

4.52

297.9

31.4

2006.1

SC2

812.8

168.4

4.52

297.9

43.2

2233.0

SC3

812.8

168.2

4.52

297.9

43.2

2112.9

SC4

812.8

168.3

4.47

297.9

23.0

1743.7

Gardener and Jacobson [55]

1

1524.0

101.7

3.07

605.1

34.1

818.5

2

1524.0

101.7

3.10

605.1

31.2

800.7

3

203.3

101.7

3.07

605.1

34.1

1112.1

4

203.3

101.7

3.07

605.1

31.2

1067.6

5

1050.0

120.7

4.09

451.6

34.4

1156.5

6

1050.0

120.8

4.09

451.6

29.6

1092.7

7

1050.0

120.8

4.09

451.6

25.9

949.7

8

241.3

120.8

4.06

451.6

34.4

1201.0

9

241.4

120.8

4.09

451.6

29.6

1201.0

10

241.4

120.8

4.09

451.6

25.9

1112.1

11

1676.4

152.6

3.15

415.1

20.9

938.6

12

1676.4

152.7

3.15

415.1

23.1

880.7

13

304.8

152.6

3.18

415.1

20.9

1201.0

14

304.9

152.6

3.15

415.1

23.1

1201.0

15

304.9

152.6

4.93

633.4

42.0

2909.1

16

304.9

152.6

4.90

633.4

43.4

2913.6

18

1524.0

76.5

1.70

363.3

25.0

244.7

19

152.3

76.4

1.70

363.3

25.0

355.9

20

609.5

76.4

1.73

363.3

40.9

411.5

21

609.4

76.5

1.73

363.3

25.9

330.3

22

152.3

76.5

1.68

363.3

40.9

434.6

23

152.4

76.4

1.70

363.3

25.9

372.3

24

152.4

76.5

1.70

363.3

33.3

433.3

25

152.5

76.5

1.73

363.3

33.3

434.6

Furlong [56]

Column-1

914.4

114.3

3.18

413.7

29.0

711.7

Column-2

914.4

114.3

3.18

413.7

29.0

756.2

Column-8

914.4

152.4

1.55

330.9

21.0

682.4

Column-9

914.4

152.4

1.55

330.9

25.9

721.5

Column-10

914.4

152.4

1.55

330.9

25.9

733.1

Column-11

914.4

127.0

2.41

330.9

35.2

627.2

Column-12

914.4

127.0

2.41

330.9

35.2

622.8

Column-13

914.4

127.0

2.41

330.9

35.2

658.3

Gardener [57]

1

1828.8

168.7

2.64

297.9

17.9

822.9

2

1828.8

168.7

2.64

297.9

34.1

916.3

3

1828.8

169.2

2.62

317.2

36.5

756.2

4

1828.8

169.2

2.62

317.2

33.6

689.5

5

2133.6

168.1

3.61

221.3

26.6

947.5

6

2133.6

168.1

3.61

221.3

32.8

1049.8

7

2133.6

168.7

5.00

260.6

32.9

1129.8

8

2133.6

168.7

5.00

260.6

27.4

1165.4

1a

304.8

168.7

2.64

297.9

17.9

1325.6

2a

304.8

168.7

2.64

297.9

34.1

1218.8

3a

304.8

169.2

2.62

317.2

36.5

1307.8

4a

304.8

169.2

2.62

317.2

33.6

1330.0

5a

304.8

168.1

3.61

221.3

26.6

1556.9

6a

304.8

168.1

3.61

221.3

32.8

1432.3

6b

304.8

168.1

3.61

221.3

32.8

1463.5

7a

304.8

168.7

5.00

260.6

32.9

1966.1

7b

304.8

168.7

5.00

260.6

32.9

1970.6

8a

304.8

168.7

5.00

260.6

27.4

1983.9

8b

304.8

168.7

5.00

260.6

27.4

1983.9

Knowles and Park [58]

Column-1

1727.2

88.9

5.84

399.9

40.0

614.7

Column-2

1422.4

88.9

5.84

399.9

39.6

711.7

Column-3

1117.6

88.9

5.84

399.9

39.0

715.3

Column-4

812.8

88.9

5.84

399.9

41.8

918.6

Column-5

508.0

88.9

5.84

399.9

40.9

992.0

Column-7

1727.2

82.6

1.40

482.6

41.3

224.6

Column-8

1422.4

82.6

1.40

482.6

37.0

294.5

Column-9

1117.6

82.6

1.40

482.6

40.9

355.9

Column-10

812.8

82.6

1.40

482.6

40.9

400.3

Column-11

508.0

82.6

1.40

482.6

40.9

489.3

Column-12

254.0

82.6

1.40

482.6

40.9

530.2

Guiaux and Janss [59]

2

3285.0

218.3

6.45

302.0

42.2

2064.3

3

2204.0

218.3

6.30

302.0

37.1

2412.4

4

943.0

218.3

6.50

302.0

37.1

2755.7

5

941.5

218.5

6.38

302.0

37.1

2745.9

6

941.5

219.3

6.05

302.0

37.1

2804.7

9.1

2844.0

95.3

3.78

281.5

42.2

279.5

9.2

2844.0

95.3

3.70

281.5

42.2

281.5

9.3

2844.0

95.5

3.83

281.5

42.2

291.3

10.1

1942.5

95.5

3.73

281.5

37.1

362.8

10.2

1942.0

95.3

3.78

281.5

37.1

407.0

10.3

1943.3

95.3

3.78

281.5

37.1

407.0

11.1

1469.0

95.5

3.75

281.5

42.2

444.2

11.2

1466.8

95.3

3.73

281.5

42.2

441.3

11.3

1468.0

95.0

3.70

281.5

42.2

495.2

12.1

997.5

95.5

3.70

281.5

42.2

524.7

12.2

992.0

95.3

3.55

281.5

42.2

507.0

12.3

995.0

95.3

3.68

281.5

42.2

534.5

13.1

504.0

95.3

3.73

281.5

42.2

637.4

13.2

503.8

95.5

3.75

281.5

42.2

632.5

13.3

505.0

95.5

3.73

281.5

42.2

666.9

Cai and Jiao [60]

G-21

1100.0

273.0

8.00

306.9

34.7

5580.0

G-32

1100.0

273.0

8.00

306.9

11.9

4040.3

G-33

1100.0

273.0

8.00

306.9

11.9

3844.2

G-56

1100.0

273.0

8.00

306.9

17.5

5197.5

G-57

1100.0

273.0

8.00

306.9

17.5

5295.6

G-31

880.0

204.0

2.00

235.4

12.2

1068.9

G-35

880.0

204.0

2.00

235.4

12.2

1039.5

G-46

840.0

204.0

2.00

235.4

33.4

1294.5

G-50

840.0

204.0

2.00

235.4

46.1

1637.7

G-51

840.0

204.0

2.00

235.4

46.9

1691.6

G-38

410.0

96.0

5.00

410.9

12.2

912.0

G-39

450.0

96.0

5.00

410.9

12.2

843.4

G-44

450.0

96.0

5.00

410.9

33.4

1044.4

G-45

450.0

96.0

5.00

410.9

33.4

1167.0

G-48

400.0

96.0

5.00

410.9

46.1

1176.8

G-49

400.0

96.0

5.00

410.9

46.1

1171.9

G-58

400.0

96.0

5.00

410.9

46.1

1073.8

G-59

405.0

96.0

5.00

410.9

46.1

1122.9

G-36

500.0

121.0

12.00

294.2

12.2

2417.3

G-37

500.0

121.0

12.00

294.2

12.2

2373.2

G-42

500.0

121.0

12.00

294.2

33.4

2500.7

G-1

660.0

166.0

5.00

274.6

31.4

1745.6

G-2

660.0

166.0

5.00

274.6

31.4

1696.6

G-12

660.0

166.0

5.00

274.6

34.7

1863.3

G-15

660.0

166.0

5.00

274.6

34.7

1873.1

G-16

660.0

166.0

5.00

274.6

34.7

1696.6

G-22

660.0

166.0

5.00

274.6

34.7

1735.8

G-23

660.0

166.0

5.00

274.6

34.7

2030.0

G-29

660.0

166.0

5.00

274.6

34.7

2108.4

G-41

500.0

121.0

12.00

294.2

11.9

2334.0

G-43

500.0

121.0

12.00

294.2

33.4

2422.2

G-52

500.0

121.0

12.00

294.2

46.9

2589.0

G-7

350.0

166.0

5.00

274.6

34.7

1784.8

G-8

350.0

166.0

5.00

274.6

34.7

2039.8

G-9

500.0

166.0

5.00

274.6

34.7

2000.6

G-10

500.0

166.0

5.00

274.6

34.7

2044.7

G-11

660.0

166.0

5.00

274.6

34.7

1976.0

G-18

1100.0

166.0

5.00

274.6

34.7

1985.8

G-64

260.0

320.0

7.00

250.1

53.0

7914.0

G-65

440.0

320.0

7.00

250.1

53.0

5903.6

G-66

520.0

320.0

7.00

250.1

53.0

5893.8

G-67

520.0

320.0

7.00

250.1

53.0

6384.1

G-60

200.0

121.0

12.00

294.2

9.2

2706.6

G-62

200.0

121.0

12.00

294.2

15.7

2745.9

G-63

200.0

121.0

12.00

294.2

15.7

2843.9

Cai and Gu [61]

C-1

324.0

108.0

4.00

339.1

34.0

1118.0

C-2

324.0

108.0

4.00

339.1

34.0

1059.1

C-3

324.0

108.0

4.00

339.1

34.0

1073.8

C-4

648.0

108.0

4.00

339.1

34.0

825.7

C-5

648.0

108.0

4.00

339.1

34.0

828.7

C-6

864.0

108.0

4.00

339.1

34.0

766.9

C-7

864.0

108.0

4.00

339.1

34.0

802.2

C-8

864.0

108.0

4.00

339.1

34.0

869.8

C-9

1080.0

108.0

4.00

339.1

34.0

837.5

C-10

1080.0

108.0

4.00

339.1

34.0

783.6

C-11

1620.0

108.0

4.00

339.1

34.0

708.0

C-12

1620.0

108.0

4.00

339.1

34.0

647.2

C-13

1620.0

108.0

4.00

339.1

34.0

644.3

C-14

2160.0

108.0

4.00

339.1

34.0

672.7

C-15

2160.0

108.0

4.00

339.1

34.0

698.2

C-16

2160.0

108.0

4.00

339.1

34.0

676.7

C-17

2700.0

108.0

4.00

339.1

34.0

649.2

C-18

3240.0

108.0

4.00

339.1

34.0

560.0

C-19

3240.0

108.0

4.00

339.1

34.0

478.6

C-20

3240.0

108.0

4.00

339.1

34.0

601.1

Sakino et al. [62]

S3LA

200.0

101.8

2.94

319.7

17.9

627.6

S3HA

200.0

101.8

2.94

319.7

37.4

660.0

S6LA

200.0

101.8

5.70

305.0

17.9

953.2

S6HA

200.0

101.8

5.70

305.0

37.4

970.9

SPLA-1

200.0

100.0

0.52

244.2

17.9

238.3

SPLA-2

200.0

100.0

0.52

244.2

17.9

242.2

SPLA-3

200.0

100.0

0.52

244.2

17.9

237.3

SPHA-4

200.0

100.0

0.52

244.2

37.4

389.3

SPHA-5

200.0

100.0

0.52

244.2

37.4

394.2

SPHA-6

200.0

100.0

0.52

244.2

37.4

404.0

Lin [63]

D1

480.0

150.0

0.70

245.2

22.6

538.4

D2

800.0

150.0

0.70

245.2

22.6

513.9

D4

800.0

150.0

1.40

245.2

22.6

697.3

D6

800.0

150.0

2.10

245.2

22.6

787.5

E1

480.0

150.0

0.70

245.2

33.4

744.3

E6

800.0

150.0

2.10

245.2

35.3

1073.8

Masuo et al. [64]

1A2

1150.0

190.7

6.00

505.0

55.9

3062.6

1A4

2300.0

190.7

6.00

505.0

55.9

2611.5

1A6

3450.0

190.7

6.00

505.0

55.9

2059.4

1G2

1150.0

190.7

6.00

505.0

48.3

3147.9

1G6

3450.0

190.7

6.00

505.0

48.3

2132.9

2A2

1600.0

267.4

7.00

460.9

55.9

5180.9

2A4

3200.0

267.4

7.00

460.9

55.9

4533.6

2G2

1600.0

267.4

7.00

460.9

48.3

5187.7

Sakino and Hayashi [65]

L-20-1

360.0

178.0

9.00

283.3

22.2

2922.4

L-20-2

360.0

178.0

9.00

283.3

22.2

2853.7

H-20-1

360.0

178.0

9.00

283.3

45.4

3216.6

H-20-2

360.0

178.0

9.00

283.3

45.4

3177.4

L-32-1

360.0

179.0

5.50

248.5

22.2

1814.2

L-32-2

360.0

179.0

5.50

248.5

23.9

1814.2

H-32-1

360.0

179.0

5.50

248.5

43.6

2039.8

H-32-2

360.0

179.0

5.50

248.5

43.6

2030.0

L-58-1

360.0

174.0

3.00

266.0

23.9

1314.1

L-58-2

360.0

174.0

3.00

266.0

23.9

1304.3

H-58-1

360.0

174.0

3.00

266.0

45.7

1608.3

H-58-2

360.0

174.0

3.00

266.0

45.7

1676.9

Luksha and Nesterovich [66]

SB-1

477.0

159.0

5.10

391.5

41.5

477.0

Kenny et al. [67]

1

914.4

139.7

9.22

681.9

38.4

3047.0

2

914.4

139.7

9.22

681.9

38.4

2597.8

3

3048.0

139.7

9.22

681.9

38.4

2001.7

4

914.4

177.8

12.75

593.6

38.4

5253.3

5

914.4

177.8

12.75

593.6

38.4

5524.7

6

3048.0

177.8

12.75

593.6

38.4

4310.3

Prion and Boehme [68]

B1

900.0

152.0

1.70

270.0

73.0

1550.0

B3

900.0

152.0

1.70

270.0

73.0

1458.0

B5

500.0

152.0

1.70

270.0

73.0

1548.0

B7

500.0

152.0

1.70

270.0

73.0

1448.0

BP9

660.0

152.0

1.70

328.0

85.0

1863.0

BP10

660.0

152.0

1.70

328.0

85.0

1895.0

Fujii [69]

B60-16

850.0

114.0

1.79

266.0

37.0

515.0

B60-35

850.0

114.0

3.35

291.0

37.0

785.0

B60-45

850.0

114.0

4.44

332.0

37.0

902.0

B60-60

850.0

114.0

6.00

486.0

37.0

1334.0

B100-60

1250.0

114.0

5.91

486.0

25.0

1177.0

B150-16

1750.0

114.0

1.93

266.0

33.0

461.0

B150-35

1750.0

114.0

3.32

291.0

30.0

628.0

B150-60

1750.0

114.0

5.94

486.0

37.0

1138.0

B200-16

2250.0

114.0

1.78

266.0

28.0

373.0

B200-35

2320.0

114.0

3.31

291.0

24.0

535.0

B200-60

2250.0

114.0

6.14

486.0

28.0

1000.0

B250-16

2750.0

114.0

1.72

266.0

36.0

353.0

B250-35

2750.0

114.0

3.41

291.0

36.0

569.0

B250-45

2750.0

114.0

4.49

332.0

31.0

657.0

B250-60

2750.0

114.0

6.11

486.0

33.0

941.0

Bergmann [70]

RU11

1000.0

323.9

5.60

443.9

92.3

11,481.0

RU14

4000.0

323.9

5.60

478.0

92.3

10,401.0

Matsui and Tsuida [71]

C4-0

661.0

165.2

4.50

413.9

40.9

1562.2

C8-0

1322.0

165.2

4.50

413.9

40.9

1412.2

C12-0

1982.0

165.2

4.50

413.9

40.9

1372.0

C18-0

2974.0

165.2

4.50

413.9

40.9

1147.4

C24-0

3965.0

165.2

4.50

413.9

40.9

1018.9

O’Shea and Bridge [72]

R12CF1

662.0

190.0

1.11

203.1

110.3

3030.0

R12CF2

656.0

190.0

1.11

203.1

110.3

2940.0

R12CF3

662.0

190.0

1.11

203.1

110.3

3140.0

R12CF4

662.0

190.0

1.11

203.1

94.7

2462.0

R12CF5

664.0

190.0

1.11

203.1

110.3

3055.0

R12CF7

660.0

190.0

1.11

203.1

110.3

3000.0

Schneider [73]

C1

635

140.8

3

285

28.18

881

C2

635

141.4

6.5

313

23.805

1825

C3

635

140

6.68

537

28.18

2715

Tan et al. [74]

A1-1

438.0

125.0

1.00

232.0

84.7

1275.0

A1-2

438.0

125.0

1.00

232.0

84.7

1239.0

A2-1

445.0

127.0

2.00

258.0

84.7

1491.0

A2-2

445.0

127.0

2.00

258.0

84.7

1339.0

A3-1

465.0

133.0

3.50

352.0

84.7

1995.0

A3-2

465.0

133.0

3.50

352.0

84.7

1991.0

A3-3

465.0

133.0

3.50

352.0

84.7

1962.0

A4-1

465.0

133.0

4.70

352.0

84.7

2273.0

A4-2

465.0

133.0

4.70

352.0

84.7

2158.0

A4-3

465.0

133.0

4.70

352.0

84.7

2253.0

A5-1

445.0

127.0

7.00

429.0

84.7

3404.0

A5-2

445.0

127.0

7.00

429.0

84.7

3370.0

A5-3

445.0

127.0

7.00

429.0

84.7

3364.0

B-1

378.0

108.0

4.50

358.0

77.4

1535.0

B-2

378.0

108.0

4.50

358.0

77.4

1578.0

B-3

378.0

108.0

4.50

358.0

77.4

1518.0

Kilpatrick and Rangan [75]

SC-38

305.7

101.9

3.00

371.0

51.3

523.0

Yamamoto et al. [76]

C10A-2A-1

304.2

101.4

3.03

371.0

23.2

660.0

C10A-2A-2

305.7

101.9

3.03

371.0

23.2

649.0

C10A-2A-3

305.4

101.8

3.03

371.0

23.2

682.0

C20A-2A

649.2

216.4

6.61

452.0

24.3

3568.0

C30A-2A

954.9

318.3

10.36

331.0

24.2

6565.0

C10A-3A-1

305.1

101.7

3.03

371.0

40.2

800.0

C10A-3A-2

303.9

101.3

3.03

371.0

40.2

742.0

C20A-3A

649.2

216.4

6.61

452.0

38.3

4023.0

C30A-3A

954.9

318.3

10.36

331.0

39.3

7933.0

C10A-4A-1

305.7

101.9

3.03

371.0

51.3

877.0

C10A-4A-2

304.5

101.5

3.03

371.0

51.3

862.0

C20A-4A

649.2

216.4

6.61

452.0

46.8

4214.0

C30A-4A

955.5

318.5

10.36

331.0

52.5

8289.0

O’Shea and Bridge [77]

S30CS50B

580.5

165.0

2.82

363.3

48.3

1662.0

S20CS50A

663.5

190.0

1.94

256.4

41.0

1678.0

S16CS50B

664.5

190.0

1.52

306.1

48.3

1695.0

S12CS50A

664.5

190.0

1.13

185.7

41.0

1377.0

S10CS50A

659.0

190.0

0.86

210.7

41.0

1350.0

S30CS80A

580.5

165.0

2.82

363.3

80.2

2295.0

S20CS80B

663.5

190.0

1.94

256.4

74.7

2592.0

S16CS80A

663.5

190.0

1.52

306.1

80.2

2602.0

S12CS80A

662.5

190.0

1.13

185.7

80.2

2295.0

S10CS80B

663.5

190.0

0.86

210.7

74.7

2451.0

S30CS10A

577.5

165.0

2.82

363.3

108.0

2673.0

S20CS10A

660.0

190.0

1.94

256.4

108.0

3360.0

S16CS10A

661.5

190.0

1.52

306.1

108.0

3260.0

S12CS10A

660.0

190.0

1.13

185.7

108.0

3058.0

S10CS10A

662.0

190.0

0.86

210.7

108.0

3070.0

Han and Yan [78]

SC154-1

4158.0

108.0

4.50

348.1

31.8

342.0

SC154-2

4158.0

108.0

4.50

348.1

31.8

292.0

SC154-3

4158.0

108.0

4.50

348.1

46.8

298.0

SC154-4

4158.0

108.0

4.50

348.1

46.8

280.0

SC149-1

4023.0

108.0

4.50

348.1

46.8

318.0

SC149-2

4023.0

108.0

4.50

348.1

46.8

320.0

SC141-1

3807.0

108.0

4.50

348.1

31.8

350.0

SC141-2

3807.0

108.0

4.50

348.1

31.8

370.0

SC130-1

3510.0

108.0

4.50

348.1

31.8

400.0

SC130-2

3510.0

108.0

4.50

348.1

31.8

390.0

SC130-3

3510.0

108.0

4.50

348.1

46.8

440.0

Johansson and Gylltoft [79]

SFE

450.0

157.7

2.10

286.0

18.7

2150.0

Chen and Hikosaka [80]

A1

299.3

114.5

3.80

343.0

57.6

2989.0

B1

300.0

114.3

3.80

343.0

57.6

1930.6

C1

2475.0

165.0

4.70

355.0

33.4

1979.6

Han and Yao [81]

S-1

360.0

120.0

2.65

340.0

20.1

640.0

S-3

360.0

120.0

2.65

340.0

36.0

816.0

L-2

1400.0

120.0

2.65

340.0

36.0

769.0

Uenaka et al. [82]

t10-000

450.0

158.7

0.90

221.0

18.7

699.7

t16-000

450.0

157.5

1.50

308.0

18.7

815.4

t23-000

450.0

157.7

2.14

286.0

18.7

907.5

Giakoumelis and Lam [8]

C3

300.0

114.4

3.98

343.0

31.4

948.0

C4

300.0

114.6

3.99

343.0

93.6

1308.0

C5

300.0

114.4

3.82

343.0

34.7

929.0

C6

300.0

114.3

3.93

343.0

97.2

1359.0

C7

300.5

114.9

4.91

365.0

34.7

1380.0

C8

300.0

115.0

4.92

365.0

104.9

1787.0

C9

300.5

115.0

5.02

365.0

57.6

1413.0

C10

299.3

114.5

3.75

343.0

57.6

1038.0

C11

300.0

114.3

3.75

343.0

57.6

1067.0

C12

300.0

114.3

3.85

343.0

31.9

998.0

C13

300.5

114.1

3.85

343.0

31.9

948.0

C14

300.0

114.5

3.84

343.0

98.9

1359.0

C15

299.5

114.4

3.85

343.0

98.9

1182.0

Ghannam et al. [83]

C11-N

2475.0

165.0

4.70

355.0

33.4

1058.0

C12-N

2475.0

165.0

4.70

355.0

33.4

1037.0

C13-LW

2475.0

165.0

4.70

355.0

10.0

800.0

C14-LW

2475.0

165.0

4.70

355.0

10.0

834.0

C16-N

2200.0

110.0

1.90

350.0

33.4

437.0

C17-N

2200.0

110.0

1.90

350.0

33.4

368.0

C18-N

2200.0

110.0

1.90

350.0

33.4

355.0

C19-N

2200.0

110.0

1.90

350.0

33.4

374.0

C22-LW

2200.0

110.0

1.90

350.0

10.0

269.0

C23-LW

2200.0

110.0

1.90

350.0

10.0

252.0

C24-LW

2200.0

110.0

1.90

350.0

10.0

211.0

C25-LW

2200.0

110.0

1.90

350.0

10.0

219.0

Sakino et al. [84]

CC4-A-2

447.0

149.0

2.96

308.0

25.4

941.0

CC4-A-4-1

447.0

149.0

2.96

308.0

40.5

1064.0

CC4-A-4-2

447.0

149.0

2.96

308.0

40.5

1080.0

CC4-A-8

447.0

149.0

2.96

308.0

77.0

1781.0

CC4-C-2

903.0

301.0

2.96

279.0

25.4

2382.0

CC4-C-4-1

900.0

300.0

2.96

279.0

41.1

3277.0

CC4-C-4-2

900.0

300.0

2.96

279.0

41.1

3152.0

CC4-C-8

903.0

301.0

2.96

279.0

80.3

5540.0

CC4-D-2

1350.0

450.0

2.96

279.0

25.4

4415.0

CC4-D-4-1

1350.0

450.0

2.96

279.0

41.1

6870.0

CC4-D-4-2

1350.0

450.0

2.96

279.0

41.1

6985.0

CC4-D-8

1350.0

450.0

2.96

279.0

85.1

11,665.0

CC6-A-2

366.0

122.0

4.54

576.0

25.4

1509.0

CC6-A-4-1

366.0

122.0

4.54

576.0

40.5

1657.0

CC6-A-4-2

366.0

122.0

4.54

576.0

40.5

1663.0

CC6-A-8

366.0

122.0

4.54

576.0

77.0

2100.0

CC6-C-2

717.0

239.0

4.54

507.0

25.4

3035.0

CC6-C-4-1

714.0

238.0

4.54

507.0

40.5

3583.0

CC6-C-4-2

714.0

238.0

4.54

507.0

40.5

3647.0

CC6-C-8

714.0

238.0

4.54

507.0

77.0

5578.0

CC6-D-2

1083.0

361.0

4.54

525.0

25.4

5633.0

CC6-D-4-1

1083.0

361.0

4.54

525.0

41.1

7260.0

CC6-D-4-2

1080.0

360.0

4.54

525.0

41.1

7045.0

CC6-D-8

1080.0

360.0

4.54

525.0

85.1

11,505.0

Han and Yao [85]

scsc1-1

300.0

100.0

3.00

303.5

58.5

708.0

scsc1-2

300.0

100.0

3.00

303.5

58.5

820.0

sch1-1

300.0

100.0

3.00

303.5

58.5

766.0

sch1-2

300.0

100.0

3.00

303.5

58.5

820.0

scv1-1

300.0

100.0

3.00

303.5

58.5

780.0

scv1-2

300.0

100.0

3.00

303.5

58.5

814.0

scsc2-1

600.0

200.0

3.00

303.5

58.5

2320.0

scsc2-2

600.0

200.0

3.00

303.5

58.5

2330.0

sch2-1

600.0

200.0

3.00

303.5

58.5

2160.0

sch2-2

600.0

200.0

3.00

303.5

58.5

2160.0

scv2-1

600.0

200.0

3.00

303.5

58.5

2383.0

scv2-2

600.0

200.0

3.00

303.5

58.5

2256.0

lcsc1-1

2000.0

200.0

3.00

303.5

58.5

1830.0

lcsc1-2

2000.0

200.0

3.00

303.5

58.5

1806.0

lch1-1

2000.0

200.0

3.00

303.5

58.5

1882.0

lch1-2

2000.0

200.0

3.00

303.5

58.5

2060.0

lcv1

2000.0

200.0

3.00

303.5

58.5

2115.0

Yu et al. [86, 87]

SZ5S4A1a

650.0

219.0

4.78

350.0

50.5

3400.0

SZ5S4A1b

650.0

219.0

4.72

350.0

50.5

3350.0

SZ5S3A1

650.0

219.0

4.75

350.0

42.6

3150.0

SZ3S6A1

510.0

165.0

2.73

350.0

77.2

2080.0

SZ3S4A1

510.0

165.0

2.72

350.0

57.0

1750.0

SZ3C4A1

510.0

165.0

2.75

350.0

46.3

1560.0

C30-1

300.0

100.0

1.90

404.0

121.6

1125.0

C30-2

300.0

100.0

1.90

404.0

121.6

1085.0

C30-3

300.0

100.0

1.90

404.0

121.6

1100.0

C30-4

300.0

100.0

1.90

404.0

121.6

1170.0

C90-1

900.0

100.0

1.90

404.0

121.6

1065.0

C90-2

900.0

100.0

1.90

404.0

121.6

980.0

C150-1

1500.0

100.0

1.90

404.0

121.6

907.0

C150-2

1500.0

100.0

1.90

404.0

121.6

760.0

C300-1

3000.0

100.0

1.90

404.0

121.6

288.0

C300-2

3000.0

100.0

1.90

404.0

121.6

317.5

Lee et al. [88]

O49C36_30

2000.0

114.9

3.00

354.1

40.3

6888.0

O57C30_30

2500.0

114.9

3.00

354.1

40.3

9823.0

Yang and Han [89]

Ccfst-1

1000.0

127.3

3.00

345.2

40.3

1462.0

Ccfst-2

1500.0

127.3

3.00

345.2

40.3

1489.0

Dundu [90]

S1-1

1000.0

114.9

3.00

354.1

40.3

806.4

S1-2

1500.0

114.9

3.00

354.1

40.3

688.2

S1-3

2000.0

114.9

3.00

354.1

40.3

632.2

S1-4

2500.0

114.9

3.00

354.1

40.3

566.1

S1-5

1000.0

127.3

3.00

345.2

40.3

912.1

S1-6

1500.0

127.3

3.00

345.2

40.3

848.5

S1-7

2000.0

127.3

3.00

345.2

40.3

715.8

S1-8

2500.0

127.3

3.00

345.2

40.3

638.8

S1-9

1000.0

139.2

3.00

362.0

40.3

1059.8

S1-10

1500.0

139.2

3.00

362.0

40.3

941.9

S1-11

2000.0

139.2

3.00

362.0

40.3

868.3

S1-12

2500.0

139.2

3.00

362.0

40.3

750.7

S2-1

1000.0

152.4

3.00

488.2

30.9

1463.3

S2-2

1500.0

152.4

3.00

488.2

30.9

1209.1

S2-3

2000.0

152.4

3.00

488.2

30.9

1167.3

S2-4

2500.0

152.4

3.00

394.3

30.9

968.9

S2-5

1000.0

165.1

3.00

438.2

30.9

1549.5

S2-6

1500.0

165.1

3.00

438.2

30.9

1338.0

S2-7

2000.0

165.1

3.00

438.2

30.9

1234.5

S2-8

2500.0

165.1

3.00

430.3

30.9

1232.0

S2-9

1000.0

193.7

3.00

398.8

30.9

1999.6

S2-10

1500.0

193.7

3.50

398.8

30.9

1817.1

S2-11

2000.0

193.7

3.50

398.8

30.9

1796.3

S2-12

2500.0

193.7

3.50

392.2

30.9

1620.8

Portolés et al. [91]

1

2135.0

159.0

6.00

394.0

37.7

1414.0

13

2135.0

159.0

6.00

457.0

120.1

2792.0

14.0

2135.0

159.0

6.00

487.0

116.0

2193.0

Chang et al. [92]

CST-16

900.0

114.3

2.70

235.0

107.2

666.6

CST-17

900.0

114.3

2.70

235.0

56.2

701.9

CST-18

900.0

114.3

2.70

235.0

66.8

1011.0

Ekmekyapar and Al-Eliwi [7]

114.3-2.74-300-56

300.0

114.3

2.74

235.0

56.2

901.8

114.3-2.74-300-66

300.0

114.3

2.74

235.0

66.8

981.2

114.3-2.74-300-107

300.0

114.3

2.74

235.0

107.2

1295.1

114.3-5.90-300-56

300.0

114.3

5.90

355.0

56.2

1735.8

114.3-5.90-300-66

300.0

114.3

5.90

355.0

66.8

1818.6

114.3-5.90-300-107

300.0

114.3

5.90

355.0

107.2

1989.9

114.3-2.74-600-56

600.0

114.3

2.74

235.0

56.2

947.8

114.3-2.74-600-66

600.0

114.3

2.74

235.0

66.8

1031.9

114.3-2.74-600-107

600.0

114.3

2.74

235.0

107.2

1296.6

114.3-5.90-600-56

600.0

114.3

5.90

355.0

56.2

1723.2

114.3-5.90-600-66

600.0

114.3

5.90

355.0

66.8

1810.9

114.3-5.90-600-107

600.0

114.3

5.90

355.0

107.2

1968.1

114.3-2.74-900-56

900.0

114.3

2.74

235.0

56.2

877.3

114.3-2.74-900-66

900.0

114.3

2.74

235.0

66.8

983.5

114.3-2.74-900-107

900.0

114.3

2.74

235.0

107.2

1233.2

114.3-5.90-900-56

900.0

114.3

5.90

355.0

56.2

1592.5

114.3-5.90-900-66

900.0

114.3

5.90

355.0

66.8

1713.3

114.3-5.90-300-107

900.0

114.3

5.90

355.0

107.2

1907.3

Ye et al. [6]

CFST-1

360.0

120.0

2.70

340.0

20.1

1008.0

CFST-2

360.0

120.0

2.70

340.0

36.0

996.0

Xiong et al. [4]

C12

600.0

219.1

10.00

381.0

51.6

5241.0

C9

600.0

219.1

5.00

380.0

51.6

3118.0

Average

1140.6

157.3

14.9

355.5

54.3

1722.5

Standard deviation

888.2

154.0

150.4

154.5

149.6

1768.4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luat, NV., Shin, J. & Lee, K. Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns. Engineering with Computers 38, 1421–1450 (2022). https://doi.org/10.1007/s00366-020-01115-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01115-7

Keywords

Navigation