Skip to main content
Log in

Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, finite-element formulation based on higher order shear deformation theory (HSDT) is proposed to evaluate the nonlinear frequency characteristics of carbon nanotube reinforced magneto-electro-elastic (CNTMEE) plates. The special emphasis has been made on investigating the effects of electro-magnetic circuits on the nonlinear coupled behaviour of CNTMEE plates, for the first time in the literature. The von-Karman type of nonlinear strain–displacement relations is assumed. The nonlinear fundamental frequencies for a given maximum transverse deflection are obtained through direct iterative method. Also, different forms of functionally graded CNT distributions are considered and compared with that of uniformly distributed CNT arrangement. Several numerical illustrations are depicted to highlight the influence of parameters such as electro-magnetic conditions, CNT volume fraction, boundary conditions, aspect ratio, length-to-thickness ratio etc. One of the major outcomes of this study is the influence of coupling fields on the nonlinear frequency response of CNTMEE plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Alshorbagy AE, Eltaher MA, Mahmoud FF (2011) Free vibration characteristics of a functionally graded beam by finite element method. Appl Math Model 35(1):412–425

    MathSciNet  MATH  Google Scholar 

  2. Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420

    MathSciNet  MATH  Google Scholar 

  3. Mahmoud FF, Eltaher MA, Alshorbagy AE, Meletis EI (2012) Static analysis of nanobeams including surface effects by nonlocal finite element. J Mech Sci Technol 26(11):3555–3563

    Google Scholar 

  4. Eltaher MA, Emam SA, Mahmoud FF (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88

    Google Scholar 

  5. Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos Struct 99:193–201

    Google Scholar 

  6. Hamed MA, Sadoun AM, Eltaher MA (2019) Effects of porosity models on static behavior of size dependent functionally graded beam. Struct Eng Mech 71(1):89–98

    Google Scholar 

  7. Eltaher MA, Omar FA, Abdraboh AM, Abdalla WS, Alshorbagy AE (2020) Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts. Smart Struct Syst 25(2):219–228

    Google Scholar 

  8. Vinyas M (2019) Vibration control of skew magneto-electro-elastic plates using active constrained layer damping. Compos Struct 208:600–617

    Google Scholar 

  9. Vinyas M (2020) Interphase effect on the controlled frequency response of three-phase smart magneto-electro-elastic plates embedded with active constrained layer damping: FE study. Mater Res Express 6:125707

    Google Scholar 

  10. Vinyas M, Harursampath D, Trung NT (2019) Influence of active constrained layer damping on the coupled vibration response of functionally graded magneto-electro-elastic plates with skewed edges. Def Technol. https://doi.org/10.1016/j.dt.2019.11.016

    Article  Google Scholar 

  11. Vinyas M (2020) Computational analysis of smart magneto-electro-elastic materials and structures: review and classification. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09406-4

    Article  MathSciNet  Google Scholar 

  12. Pan E (2001) Exact solution for simply supported and multilayered magneto-electro-elastic plates. J Appl Mech 68(4):608–618

    MATH  Google Scholar 

  13. Milazzo A (2013) A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams. J Sound Vib 332(2):465–483

    Google Scholar 

  14. Wang J, Chen L, Fang S (2003) State vector approach to analysis of multilayered magneto-electro-elastic plates. Int J Solids Struct 40(7):1669–1680

    MATH  Google Scholar 

  15. Xin L, Hu Z (2015) Free vibration of simply supported and multilayered magneto-electro-elastic plates. Compos Struct 121:344–350

    Google Scholar 

  16. Chen J, Chen H, Pan E, Heyliger PR (2007) Modal analysis of magneto-electro-elastic plates using the state-vector approach. J Sound Vib 304(3):722–734

    Google Scholar 

  17. Huang DJ, Ding HJ, Chen WQ (2007) Analytical solution for functionally graded magneto-electro-elastic plane beams. Int J Eng Sci 45(2):467–485

    Google Scholar 

  18. Vinyas M, Piyush JS, Kattimani SC (2018) Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. J Intell Mater Syst Struct 29(7):1430–1455

    Google Scholar 

  19. Sladek J, Sladek V, Krahulec S, Pan E (2013) The MLPG analyses of large deflections of magnetoelectroelastic plates. Eng Anal Boundary Elem 37(4):673–682

    MathSciNet  MATH  Google Scholar 

  20. Hamed MA, Abo-bakr RM, Mohamed SA, Eltaher MA (2020) Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Eng Comput 22:1–8

    Google Scholar 

  21. Eltaher MA, Mohamed SA (2020) Buckling and stability analysis of sandwich beams subjected to varying axial loads. Steel Compos Struct 34(2):241–260

    Google Scholar 

  22. Hamed MA, Mohamed SA, Eltaher MA (2020) Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads. Steel Compos Struct 34(1):75–89

    Google Scholar 

  23. Eltaher MA, Mohamed SA, Melaibari A (2020) Static stability of a unified composite beams under varying axial loads. Thin-Walled Struct 147:106488

    Google Scholar 

  24. Eltaher MA, Mohamed N, Mohamed SA, Seddek LF (2019) Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations. Appl Math Model 75:414–445

    MathSciNet  MATH  Google Scholar 

  25. Moita JMS, Soares CMM, Soares CAM (2009) Analyses of magneto-electro-elastic plates using a higher order finite element model. Compos Struct 91(4):421–426

    Google Scholar 

  26. Shooshtari A, Razavi S (2016) Vibration analysis of a magnetoelectroelastic rectangular plate based on a higher-order shear deformation theory. Latin Am J Solids Struct 13(3):554–572

    Google Scholar 

  27. Vinyas M, Kattimani SC (2018) Finite element evaluation of free vibration characteristics of magneto-electro-elastic plates in hygrothermal environment using higher order shear deformation theory. Compos Struct 202:1339–1352

    Google Scholar 

  28. Vinyas M, Kattimani SC, Harursampath D, Nguyen TT (2019) Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment. Smart Struct Syst 24(2):267–292

    Google Scholar 

  29. Vinyas M, Nischith G, Loja MAR, Ebrahimi F, Duc ND (2019) Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos Struct 214:132–142

    Google Scholar 

  30. Vinyas M (2019) A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Composite Part B 158:286–301

    Google Scholar 

  31. Vinyas M, Harursampath D, Nguyen-Thoi T (2020) A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element method. Def Technol. https://doi.org/10.1016/j.dt.2020.02.009

    Article  Google Scholar 

  32. Vinyas M, Sunny KK, Harursampath D, Trung NT, Loja MAR (2019) Influence of interphase on the multi-physics coupled frequency of three phase smart magneto-electro-elastic composite plates. Compos Struct 226:111254

    Google Scholar 

  33. Vinyas M, Sandeep AS, Trung NT, Ebrahimi F, Duc ND (2019) A finite element based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory. J Intell Mater Syst Struct 30(6):2478–2501

    Google Scholar 

  34. Ebrahimi F, Jafari A, Vinyas M (2019) Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates. Struct Eng Mech 72(1):875–891

    Google Scholar 

  35. Lage RG, Soares CMM, Soares CAM, Reddy JN (2004) Layerwise partial mixed finite element analysis of magneto-electro-elastic plates. Comput Struct 82(17):1293–1301

    Google Scholar 

  36. Milazzo A (2014) Layer-wise and equivalent single layer models for smart multilayered plates. Compos B Eng 67:62–75

    Google Scholar 

  37. Milazzo A (2014) Refined equivalent single layer formulations and finite elements for smart laminates free vibrations. Compos B Eng 61:238–253

    Google Scholar 

  38. Benedetti I, Milazzo A (2017) Advanced models for smart multilayered plates based on Reissner mixed variational theorem. Compos B Eng 119:215–229

    Google Scholar 

  39. Mohammadimehr M, Okhravi SV, AkhavanAlavi SM (2018) Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. J Vib Control 24(8):1551–1569

    MathSciNet  Google Scholar 

  40. Vinyas M (2020) On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Compos Struct 240:112044

    Google Scholar 

  41. Vinyas M, Harursampath D, Kattimani SC (2020) On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Def Technol. https://doi.org/10.1016/j.dt.2020.03.012

    Article  Google Scholar 

  42. Vinyas M, Harursampath D, Kattimani SC (2020) Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using Reddy’s third order shear deformation theory. Struct Eng Mech 73(6):667–684

    Google Scholar 

  43. Razavi S, Shooshtari A (2015) Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos Struct 119:377–384

    Google Scholar 

  44. Shooshtari A, Razavi S (2015) Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation. Mech Res Commun 69:103–113. https://doi.org/10.1016/j.mechrescom.2015.06.011

    Article  Google Scholar 

  45. Shooshtari A, Razavi S (2015) Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation. Compos Part B: Eng 78:95–108. https://doi.org/10.1016/j.compositesb.2015.03.070

    Article  Google Scholar 

  46. Shooshtari A, Razavi S (2016) Large amplitude free vibration of magneto-electro-elastic curved panels. Scientia Iranica 23(6):2606–2615

    Google Scholar 

  47. Shabanpour S, Razavi S, Shooshtari A (2019) Nonlinear vibration analysis of laminated magneto-electro-elastic rectangular plate based on third-order shear deformation theory. Iran J Sci Technol Trans Mech Eng 43(1):211–223

    Google Scholar 

  48. Alaimo A, Benedetti I, Milazzo A (2014) A finite element formulation for large deflection of multilayered magneto-electro-elastic plates. Compos Struct 107:643–653

    Google Scholar 

  49. Kattimani SC, Ray MC (2015) Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates. Int J Mech Sci 99:154–167

    Google Scholar 

  50. Eltaher MA, Agwa MA (2016) Analysis of size-dependent mechanical properties of CNTs mass sensor using energy equivalent model. Sens Actuators A 246:9–17

    Google Scholar 

  51. Eltaher MA, Almalki TA, Ahmed KI, Almitani KH (2019) Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach. Adv Nano Res 7(1):39

    Google Scholar 

  52. Mohamed N, Mohamed SA, Eltaher MA (2020) Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng Comput 15:1–4

    Google Scholar 

  53. Eltaher MA, Mohamed N, Mohamed S, Seddek LF (2019) Postbuckling of curved carbon nanotubes using energy equivalent model. J Nano Res 57:136–157

    Google Scholar 

  54. Mohamed N, Eltaher MA, Mohamed SA, Seddek LF (2019) Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation. Struct Eng Mech 70(6):737–750

    Google Scholar 

  55. Thanh NV, Khoa ND, Tuan ND, Tran P, Duc ND (2017) Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties and surrounded on elastic foundations. J Therm Stress 40(10):1254–1274

    Google Scholar 

  56. Wang ZX, Shen HS (2012) Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Compos B Eng 43(2):411–421

    Google Scholar 

  57. Shen H-S (2009) Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments. Compos Struct 91:9–19

    Google Scholar 

  58. Shen H-S, Zhu ZH (2010) Buckling and postbuckling behavior of functionally graded nanotube-reinforced composite plates in thermal environments. Comput Mater Continua 18:155–182

    Google Scholar 

  59. Shen HS, Xiang Y (2012) Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput Methods Appl Mech Eng 213:196–205

    MathSciNet  MATH  Google Scholar 

  60. Wang Z-X, Shen H-S (2011) Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput Mater Sci 50:2319–2330

    Google Scholar 

  61. Shen H-S, Zhang C-L (2010) Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater Des 31:3403–3411

    Google Scholar 

  62. Shen H-S (1997) Kármán-type equations for a higher-order shear deformation plate theory and its use in the thermal postbuckling analysis. Appl Math Mech 18:1137–1152

    MATH  Google Scholar 

  63. Keleshteri MM, Asadi H, Wang Q (2017) Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation. Thin-Walled Struct 120:203–214

    Google Scholar 

  64. Mirzaei M, Kiani Y (2016) Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets. Acta Mech 227(7):1869–1884

    MathSciNet  MATH  Google Scholar 

  65. Mehar K, Panda SK (2016) Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field. Compos Struct 143:336–346

    Google Scholar 

  66. Lin F, Xiang Y (2014) Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams. Int J Struct Stab Dyn 14(01):1350056

    MathSciNet  MATH  Google Scholar 

  67. Kiani Y (2016) Free vibration of FG-CNT reinforced composite skew plates. Aerosp Sci Technol 58:178–188

    Google Scholar 

  68. Reddy JN (2004) An introduction to nonlinear finite element analysis. Oxford University Press, Cambridge

    MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of Indian Institute of Science, Bangalore, through C.V. Raman Post-doctoral fellowship with grant number R(IA)/CVR-PDF/2019/1630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinyas Mahesh.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Grouping the terms based on the degrees of freedom and assigning stiffness matrices, Eq. (15) can be expressed as follows:

$$ \delta \left\{ {d_{t} } \right\}^{\text{T}} \left[ \begin{aligned} & \left\{ {\left[ {K_{{{\text{tbNLBNL1}}\_{\text{tbtbNL1}}}} } \right] + \left[ {K_{\text{ts1}} } \right]} \right\}\left\{ {d_{\text{t}} } \right\} + \left\{ {\left[ {K_{{{\text{rbNl\_rtb24}}}} } \right]^{\text{T}} + \left[ {K_{\text{rts13}} } \right]^{\text{T}} } \right\}\left\{ {d_{\text{r}} } \right\} \hfill \\ & + \left\{ {\left[ {K_{{{\text{rbNL\_rtb4}}}} } \right] + \left[ {K_{\text{rts3}} } \right]} \right\}\left\{ {d_{\text{r*}} } \right\} + \left\{ {\left[ {K_{{{\text{bNL\_tb}}\phi 1}} } \right] + \left[ {K_{{{\text{ts}}\phi 1}} } \right]} \right\}\left\{ \phi \right\} \hfill \\ & + \left\{ {\left[ {K_{{{\text{bNL\_tb}}\psi 1}} } \right] + \left[ {K_{{{\text{ts}}\psi 1}} } \right]} \right\}\left\{ \psi \right\} \hfill \\ \end{aligned} \right] + $$
$$ \delta \left\{ {d_{\text{r}} } \right\}^{\text{T}} \left[ \begin{aligned} & \left\{ {\left[ {K_{\text{rtbrbNL24}} } \right] + \left[ {K_{\text{rts13}} } \right]} \right\}\left\{ {d_{\text{t}} } \right\} + \left\{ {\left[ {K_{\text{rrb3557}} } \right] + \left[ {K_{\text{rrs3513}} } \right]} \right\}\left\{ {d_{\text{r}} } \right\} \hfill \\ & + \left\{ {\left[ {K_{\text{rrb57}} } \right] + \left[ {K_{\text{rrs35}} } \right]} \right\}\left\{ {d_{\text{r*}} } \right\} + \left\{ {\left[ {K_{\text{rbf24}} } \right] + \left[ {K_{\text{rsf13}} } \right]} \right\}\left\{ \phi \right\} \hfill \\ & + \left\{ {\left[ {K_{{{\text{rb}}\psi 24}} } \right] + \left[ {K_{{{\text{r}}\psi 1 3}} } \right]} \right\}\left\{ \psi \right\} \hfill \\ \end{aligned} \right] + $$
$$ \delta \left\{ {d_{{{\text{r}}*}} } \right\}^{\text{T}} \left[ \begin{aligned} & \left\{ {\left[ {K_{\text{rtbrbNL4}} } \right] + \left[ {K_{\text{rts3}} } \right]} \right\}\left\{ {d_{\text{t}} } \right\} + \left\{ {\left[ {K_{\text{rrb57}} } \right] + \left[ {K_{\text{rrs35}} } \right]} \right\}\left\{ {d_{\text{r}} } \right\} \hfill \\ & + \left\{ {\left[ {K_{\text{rrb7}} } \right] + \left[ {K_{\text{rrs5}} } \right]} \right\}\left\{ {d_{\text{r*}} } \right\} + \left\{ {\left[ {K_{{{\text{rb}}\phi 4}} } \right] + \left[ {K_{{{\text{rs}}\phi 3}} } \right]} \right\}\left\{ \phi \right\} \hfill \\ & + \left\{ {\left[ {K_{{{\text{rb}}\psi 4}} } \right] + \left[ {K_{{{\text{r}}\psi {\text{s}}3}} } \right]} \right\}\left\{ \psi \right\} \hfill \\ \end{aligned} \right] + $$
$$ \delta \left\{ \phi \right\}^{\text{T}} \left[ \begin{aligned} & \left( {\left[ {K_{{{\text{tb}}\phi 1}} } \right]^{\text{T}} + \left[ {K_{{{\text{bNL}}\phi 1}} } \right]^{\text{T}} + \left[ {K_{{{\text{ts}}\phi 1}} } \right]^{\text{T}} } \right)\left\{ {d_{\text{t}} } \right\} \hfill \\ & + \left( {\left[ {K_{{{\text{rb}}\phi 2}} } \right]^{\text{T}} + \left[ {K_{{{\text{rb}}\phi 4}} } \right]^{\text{T}} + \left[ {K_{{{\text{rs}}\phi 1}} } \right]^{\text{T}} + \left[ {K_{{{\text{rs}}\phi 3}} } \right]^{\text{T}} } \right)\left\{ {d_{\text{r}} } \right\} \hfill \\ & + \left( {\left[ {K_{{{\text{rb}}\phi 4}} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\phi {\text{s}}3}} } \right]^{\text{T}} } \right)\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{\phi \phi } } \right]^{\text{T}} \left\{ \phi \right\} + \left[ {K_{\phi \psi } } \right]^{\text{T}} \left\{ \psi \right\} \hfill \\ \end{aligned} \right] + $$
$$ \delta \left\{ \psi \right\}^{\text{T}} \left[ \begin{aligned} & \left( {\left[ {K_{{{\text{tb}}\psi 1}} } \right]^{\text{T}} + \left[ {K_{{{\text{bNL}}\psi 1}} } \right]^{\text{T}} + \left[ {K_{{{\text{ts}}\psi 1}} } \right]^{\text{T}} } \right)\left\{ {d_{\text{t}} } \right\} \hfill \\ & + \left( {\left[ {K_{{{\text{rb}}\psi 2}} } \right]^{\text{T}} + \left[ {K_{{{\text{rb}}\psi 4}} } \right]^{\text{T}} + \left[ {K_{{{\text{rs}}\psi 1}} } \right]^{\text{T}} + \left[ {K_{{{\text{rs}}\psi 3}} } \right]^{\text{T}} } \right)\left\{ {d_{\text{r}} } \right\} \hfill \\ & + \left( {\left[ {K_{{{\text{rb}}\psi 4}} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\psi {\text{s}}3}} } \right]^{\text{T}} } \right)\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{\phi \psi } } \right]^{\text{T}} \left\{ \phi \right\} + \left[ {K_{\psi \psi } } \right]^{\text{T}} \left\{ \psi \right\} \hfill \\ \end{aligned} \right] + $$
$$ \delta \left\{ {d_{\text{t}} } \right\}^{\text{T}} \left[ {M_{\text{tt}} } \right]\left\{ {\ddot{d}_{\text{t}} } \right\} = 0. $$
(A-1)

The equations of motion can be obtained from Eq. (A-1) by separating out the coefficients of various degrees of freedom as follows:

$$ \left[ {M_{\text{tt}} } \right]\left\{ {\ddot{d}_{\text{t}} } \right\} + \left[ {K_{1} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{2} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{3} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{4} } \right]\left\{ \phi \right\} + \left[ {K_{5} } \right]\left\{ \psi \right\} = 0 $$
(A-2)
$$ \left[ {K_{6} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{7} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{8} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{9} } \right]\left\{ \phi \right\} + \left[ {K_{10} } \right]\left\{ \psi \right\} = 0 $$
(A-3)
$$ \left[ {K_{11} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{12} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{13} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{14} } \right]\left\{ \phi \right\} + \left[ {K_{15} } \right]\left\{ \psi \right\} = 0 $$
(A-4)
$$ \left[ {K_{16} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{17} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{18} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{\phi \phi } } \right]\left\{ \phi \right\} + \left[ {K_{\phi \psi } } \right]\left\{ \psi \right\} = 0 $$
(A-5)
$$ \left[ {K_{19} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{20} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{21} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{\psi \phi } } \right]\left\{ \phi \right\} + \left[ {K_{\psi \psi } } \right]\left\{ \psi \right\} = 0. $$
(A-6)

Solving for \( \left\{ \psi \right\} \) using Eq. (A-6), it can be shown that

$$ \left\{ \psi \right\} = - \left[ {K_{\psi \psi } } \right]^{ - 1} \left\{ {\left[ {K_{19} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{20} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{21} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{\phi \psi } } \right]^{\text{T}} \left\{ \phi \right\}} \right\}. $$
(A-7)

On substituting Eq. (A-7) in Eq. (A-5) and solving for \( \left\{ \phi \right\} \) yields

$$ \left[ {K_{16} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{17} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{18} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{\phi \phi } } \right]\left\{ \phi \right\} $$
$$ - \left[ {K_{\phi \psi } } \right]\left[ {\left[ {K_{\psi \psi } } \right]^{ - 1} \left( {\left[ {K_{19} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{20} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{21} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{\phi \psi } } \right]^{\text{T}} \left\{ \phi \right\}} \right)} \right] $$
$$ \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{16} } \right] - \left[ {K_{\phi \psi } } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{19} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{17} } \right] - \left[ {K_{\phi \psi } } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{20} } \right]} \right) $$
$$ + \left\{ {d_{{{\text{r}}*}} } \right\}\left( {\left[ {K_{18} } \right] - \left[ {K_{\phi \psi } } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{21} } \right]} \right) + \left\{ \phi \right\}\left( {\left[ {K_{\phi \phi } } \right] - \left[ {K_{\phi \psi } } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{\phi \psi } } \right]^{\text{T}} } \right) $$
$$ \left[ {K_{22} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{23} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{24} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{25} } \right]\left\{ \phi \right\} = 0 $$
$$ \left\{ \phi \right\} = - \left[ {K_{25} } \right]^{ - 1} \left\{ {\left[ {K_{22} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{23} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{24} } \right]\left\{ {d_{\text{r*}} } \right\}} \right\} $$
(A-8)
$$ \left\{ \phi \right\} = - \left[ {K_{26} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{27} } \right]\left\{ {d_{\text{r}} } \right\} - \left[ {K_{28} } \right]\left\{ {d_{\text{r*}} } \right\}. $$

Similarly, substituting Eqs. (A-7) and (A-8) in Eq. (A-4) and solving for \( \left\{ {d_{\text{r*}} } \right\} \), we get

$$ \left[ {K_{11} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{12} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{13} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} + \left[ {K_{14} } \right]\left\{ \phi \right\} $$
$$ - \left[ {K_{15} } \right]\left[ {\left[ {K_{\psi \psi } } \right]^{ - 1} \left( {\left[ {K_{19} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{20} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{21} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{\phi \psi } } \right]^{\text{T}} \left\{ \phi \right\}} \right)} \right] $$
$$ \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{11} } \right] - \left[ {K_{15} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{19} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{12} } \right] - \left[ {K_{15} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{20} } \right]} \right) $$
$$ + \left\{ {d_{\text{r*}} } \right\}\left( {\left[ {K_{13} } \right] - \left[ {K_{15} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{21} } \right]} \right) + \left\{ \phi \right\}\left( {\left[ {K_{14} } \right] - \left[ {K_{15} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{\phi \psi } } \right]^{\text{T}} } \right) $$
$$ \left[ {K_{29} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{30} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{31} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{32} } \right]\left\{ \phi \right\} $$
$$ = \left[ {K_{29} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{30} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{31} } \right]\left\{ {d_{\text{r*}} } \right\} - \left[ {K_{32} } \right]\left[ {K_{26} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{32} } \right]\left[ {K_{27} } \right]\left\{ {d_{\text{r}} } \right\} - \left[ {K_{32} } \right]\left[ {K_{28} } \right]\left\{ {d_{\text{r*}} } \right\} $$
$$ = \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{29} } \right] - \left[ {K_{32} } \right]\left[ {K_{26} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{30} } \right] - \left[ {K_{32} } \right]\left[ {K_{27} } \right]} \right) + \left\{ {d_{\text{r*}} } \right\}\left( {\left[ {K_{31} } \right] - \left[ {K_{32} } \right]\left[ {K_{28} } \right]} \right) $$
$$ = \left[ {K_{33} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{34} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{35} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} $$
$$ \left\{ {d_{\text{r*}} } \right\} = - \left[ {K_{35} } \right]^{ - 1} \left( {\left[ {K_{33} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{34} } \right]\left\{ {d_{\text{r}} } \right\}} \right) $$
$$ \left\{ {d_{{{\text{r}}*}} } \right\} = - \left[ {K_{36} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{37} } \right]\left\{ {d_{\text{r}} } \right\}. $$
(A-9)

The expression for \( \left\{ {d_{\text{r}} } \right\} \) is obtained using Eqs. (A-7)–(A-9) in Eq. (A-3) as

$$ \left[ {K_{6} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{7} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{8} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{9} } \right]\left\{ \phi \right\} $$
$$ - \left[ {K_{10} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {\left[ {K_{19} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{20} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{21} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{\phi \psi } } \right]^{\text{T}} \left\{ \phi \right\}} \right] $$
$$ = \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{6} } \right] - \left[ {K_{10} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{19} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{7} } \right] - \left[ {K_{10} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{20} } \right]} \right) $$
$$ + \left\{ {d_{\text{r*}} } \right\}\left( {\left[ {K_{8} } \right] - \left[ {K_{10} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{21} } \right]} \right) + \left\{ \phi \right\}\left( {\left[ {K_{9} } \right] - \left[ {K_{10} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{\phi \psi } } \right]^{\text{T}} } \right) $$
$$ = \left[ {K_{38} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{39} } \right]\left\{ {d_{\text{r}} } \right\} - \left[ {K_{40} } \right]\left\{ {d_{\text{r*}} } \right\} - \left[ {K_{41} } \right]\left[ {K_{26} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{41} } \right]\left[ {K_{27} } \right]\left\{ {d_{\text{r}} } \right\} - \left[ {K_{41} } \right]\left[ {K_{28} } \right]\left\{ {d_{\text{r*}} } \right\} $$
$$ = \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{38} } \right] - \left[ {K_{41} } \right]\left[ {K_{26} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{39} } \right] - \left[ {K_{41} } \right]\left[ {K_{27} } \right]} \right) + \left\{ {d_{{{\text{r}}*}} } \right\}\left( {\left[ {K_{40} } \right] - \left[ {K_{41} } \right]\left[ {K_{28} } \right]} \right) $$
$$ \left[ {K_{42} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{43} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{44} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} = 0 $$
$$ = \left[ {K_{42} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{43} } \right]\left\{ {d_{\text{r}} } \right\} - \left[ {K_{44} } \right]\left[ {K_{36} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{44} } \right]\left[ {K_{37} } \right]\left\{ {d_{\text{r}} } \right\} $$
$$ \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{42} } \right] - \left[ {K_{44} } \right]\left[ {K_{36} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{43} } \right] - \left[ {K_{44} } \right]\left[ {K_{37} } \right]} \right) $$
$$ \left[ {K_{45} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{46} } \right]\left\{ {d_{\text{r}} } \right\} = 0 $$
$$ \left\{ {d_{\text{r}} } \right\} = - \left[ {K_{46} } \right]^{ - 1} \left[ {\left[ {K_{45} } \right]\left\{ {d_{\text{t}} } \right\}} \right] $$
$$ \left\{ {d_{\text{r}} } \right\} = - \left[ {K_{47} } \right]\left\{ {d_{\text{t}} } \right\}. $$
(A-10)

Finally, \( \left[ {K_{\text{eq}} } \right] \) is obtained by making use of Eqs. (A-7)–(A-10) in Eq. (A-2) and simplifying as follows:

$$ \left[ {K_{1} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{2} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{3} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{4} } \right]\left\{ \phi \right\} $$
$$ - \left[ {K_{5} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {\left[ {K_{19} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{20} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{21} } \right]\left\{ {d_{\text{r*}} } \right\} + \left[ {K_{\phi \psi } } \right]^{\text{T}} \left\{ \phi \right\}} \right] $$
$$ = \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{1} } \right] - \left[ {K_{5} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{19} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{2} } \right] - \left[ {K_{5} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{20} } \right]} \right) $$
$$ + \left\{ {d_{\text{r*}} } \right\}\left( {\left[ {K_{3} } \right] - \left[ {K_{5} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{21} } \right]} \right) + \left\{ \phi \right\}\left( {\left[ {K_{4} } \right] - \left[ {K_{5} } \right]\left[ {K_{\psi \psi } } \right]^{ - 1} \left[ {K_{\phi \psi } } \right]^{\text{T}} } \right) $$
$$ = \left[ {K_{48} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{49} } \right]\left\{ {d_{\text{r}} } \right\} + \left[ {K_{50} } \right]\left\{ {d_{{{\text{r}}*}} } \right\} - \left[ {K_{51} } \right]\left[ {K_{26} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{51} } \right]\left[ {K_{27} } \right]\left\{ {d_{\text{r}} } \right\} - \left[ {K_{51} } \right]\left[ {K_{28} } \right]\left\{ {d_{\text{r*}} } \right\} $$
$$ = \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{48} } \right] - \left[ {K_{51} } \right]\left[ {K_{26} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{49} } \right] - \left[ {K_{51} } \right]\left[ {K_{27} } \right]} \right) + \left\{ {d_{\text{r*}} } \right\}\left( {\left[ {K_{50} } \right] - \left[ {K_{51} } \right]\left[ {K_{28} } \right]} \right) $$
$$ = \left[ {K_{52} } \right]\left\{ {d_{\text{t}} } \right\} + \left[ {K_{53} } \right]\left\{ {d_{\text{r}} } \right\} - \left[ {K_{54} } \right]\left[ {K_{36} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{54} } \right]\left[ {K_{37} } \right]\left\{ {d_{\text{r}} } \right\} $$
$$ = \left\{ {d_{\text{t}} } \right\}\left( {\left[ {K_{52} } \right] - \left[ {K_{54} } \right]\left[ {K_{36} } \right]} \right) + \left\{ {d_{\text{r}} } \right\}\left( {\left[ {K_{53} } \right] - \left[ {K_{54} } \right]\left[ {K_{37} } \right]} \right) $$
$$ = \left[ {K_{55} } \right]\left\{ {d_{\text{t}} } \right\} - \left[ {K_{56} } \right]\left[ {K_{47} } \right]\left\{ {d_{\text{t}} } \right\} $$
$$ \left[ {K_{\text{eq}} } \right]\left\{ {d_{\text{t}} } \right\} = 0 $$
$$ \left[ {K_{\text{eq}} } \right] = \left[ {K_{55} } \right] - \left[ {K_{56} } \right]\left[ {K_{47} } \right]. $$
(A-11)

The relation between various stiffness matrices contributing towards \( \left[ {K_{\text{eq}} } \right] \) are expressed as

$$ \left[ {K_{1}^{e} } \right] = \left[ {K_{{{\text{tbNLbNL1\_tbtbNL1}}}}^{e} } \right] + \left[ {K_{\text{ts1}}^{e} } \right] $$
$$ \left[ {K_{2}^{e} } \right] = \left[ {K_{{{\text{rbNL\_rtb}}24}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{rts}}13}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{3}^{e} } \right] = \left[ {K_{{{\text{rbNL\_rtb4}}}}^{e} } \right]^{\text{T}} + \left[ {K_{\text{rts3}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{4}^{e} } \right] = \left[ {K_{{{\text{bNL\_tbf1}}}}^{e} } \right]^{\text{T}} + \left[ {K_{\text{tsf1}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{5}^{e} } \right] = \left[ {K_{{{\text{bNL\_tb}}\psi 1}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{ts}}\psi 1}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{6}^{e} } \right] = \left[ {K_{\text{rtbrbNL24}}^{e} } \right] + \left[ {K_{{{\text{rts}}13}}^{e} } \right] $$
$$ \left[ {K_{7}^{e} } \right] = \left[ {K_{{{\text{rrb}}3557}}^{e} } \right] + \left[ {K_{{{\text{rrs}}3513}}^{e} } \right] $$
$$ \left[ {K_{8}^{e} } \right] = \left[ {K_{{{\text{rrb}}57}}^{e} } \right] + \left[ {K_{{{\text{rrs}}35}}^{e} } \right] $$
$$ \left[ {K_{9}^{e} } \right] = \left[ {K_{{{\text{rb}}\phi 24}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\phi {\text{s}}13}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{10}^{e} } \right] = \left[ {K_{{{\text{rb}}\psi 24}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\psi {\text{s}}13}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{11}^{e} } \right] = \left[ {K_{\text{rtbrbNL4}}^{e} } \right] + \left[ {K_{{{\text{rts}}3}}^{e} } \right] $$
$$ \left[ {K_{12}^{e} } \right] = \left[ {K_{{{\text{rrb}}57}}^{e} } \right] + \left[ {K_{{{\text{rrs}}35}}^{e} } \right] $$
$$ \left[ {K_{13}^{e} } \right] = \left[ {K_{{{\text{rrb}}7}}^{e} } \right] + \left[ {K_{{{\text{rrs}}5}}^{e} } \right] $$
$$ \left[ {K_{14}^{e} } \right] = \left[ {K_{{{\text{rb}}\phi 4}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\phi {\text{s}}3}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{15}^{e} } \right] = \left[ {K_{{{\text{rb}}\psi 4}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\psi {\text{s}}3}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{16}^{e} } \right] = \left[ {K_{{{\text{tb}}\phi 1}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{bNL}}\phi 1}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{ts}}\phi 1}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{17}^{e} } \right] = \left[ {K_{{{\text{rb}}\phi 2}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{rb}}\phi 4}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\phi {\text{s}}1}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\phi {\text{s}}3}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{18}^{e} } \right] = \left[ {K_{{{\text{rb}}\phi 4}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\phi {\text{s}}3}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{19}^{e} } \right] = \left[ {K_{{{\text{tb}}\psi 1}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{bN}}\psi 1}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{ts}}\psi 1}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{20}^{e} } \right] = \left[ {K_{{{\text{rb}}\psi 2}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{rb}}\psi 4}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\psi {\text{s}}1}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\psi {\text{s}}3}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{21}^{e} } \right] = \left[ {K_{{{\text{rb}}\psi 4}}^{e} } \right]^{\text{T}} + \left[ {K_{{{\text{r}}\psi {\text{s}}3}}^{e} } \right]^{\text{T}} $$
$$ \left[ {K_{22}^{e} } \right] = \left[ {K_{16}^{e} } \right] - \left[ {K_{\phi \psi }^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{19}^{e} } \right] $$
$$ \left[ {K_{23}^{e} } \right] = \left[ {K_{17}^{e} } \right] - \left[ {K_{\phi \psi }^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{20}^{e} } \right] $$
$$ \left[ {K_{24}^{e} } \right] = \left[ {K_{18}^{e} } \right] - \left[ {K_{\phi \psi }^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{21}^{e} } \right] $$
$$ \left[ {K_{25}^{e} } \right] = \left[ {K_{\phi \phi }^{e} } \right] - \left[ {K_{\phi \psi }^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{\phi \psi }^{e} } \right]^{\text{T}} $$
$$ \begin{aligned} \left[ {K_{26}^{e} } \right] = \left[ {K_{25}^{e} } \right]^{ - 1} \left[ {K_{22}^{e} } \right]^{\text{T}} ; \hfill \\ \left[ {K_{27}^{e} } \right] = \left[ {K_{25}^{e} } \right]^{ - 1} \left[ {K_{23}^{e} } \right]^{\text{T}} ; \hfill \\ \left[ {K_{28}^{e} } \right] = \left[ {K_{25}^{e} } \right]^{ - 1} \left[ {K_{24}^{e} } \right]^{\text{T}} \hfill \\ \end{aligned} $$
$$ \begin{aligned} \left[ {K_{29}^{e} } \right] = \left[ {K_{11}^{e} } \right] - \left[ {K_{15}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{19}^{e} } \right] \hfill \\ \left[ {K_{30}^{e} } \right] = \left[ {K_{12}^{e} } \right] - \left[ {K_{15}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{20}^{e} } \right] \hfill \\ \left[ {K_{31}^{e} } \right] = \left[ {K_{13}^{e} } \right] - \left[ {K_{15}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{21}^{e} } \right] \hfill \\ \left[ {K_{32}^{e} } \right] = \left[ {K_{14}^{e} } \right] - \left[ {K_{15}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{\phi \psi }^{e} } \right]^{\text{T}} \hfill \\ \end{aligned} $$
$$ \left[ {K_{33}^{e} } \right] = \left[ {K_{29}^{e} } \right] - \left[ {K_{32}^{e} } \right]\left[ {K_{26}^{e} } \right] $$
$$ \left[ {K_{34}^{e} } \right] = \left[ {K_{30}^{e} } \right] - \left[ {K_{32}^{e} } \right]\left[ {K_{27}^{e} } \right] $$
$$ \left[ {K_{35}^{e} } \right] = \left[ {K_{31}^{e} } \right] - \left[ {K_{32}^{e} } \right]\left[ {K_{28}^{e} } \right] $$
$$ \begin{aligned} \left[ {K_{36}^{e} } \right] = \left[ {K_{35}^{e} } \right]^{ - 1} \left[ {K_{33}^{e} } \right]^{\text{T}} ; \hfill \\ \left[ {K_{37}^{e} } \right] = \left[ {K_{35}^{e} } \right]^{ - 1} \left[ {K_{34}^{e} } \right]^{\text{T}} \hfill \\ \end{aligned} $$
$$ \begin{aligned} \left[ {K_{38}^{e} } \right] = \left[ {K_{6}^{e} } \right] - \left[ {K_{10}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{19}^{e} } \right]; \hfill \\ \left[ {K_{39}^{e} } \right] = \left[ {K_{7}^{e} } \right] - \left[ {K_{10}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{20}^{e} } \right] \hfill \\ \left[ {K_{40}^{e} } \right] = \left[ {K_{8}^{e} } \right] - \left[ {K_{10}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{21}^{e} } \right]; \hfill \\ \left[ {K_{41}^{e} } \right] = \left[ {K_{9}^{e} } \right] - \left[ {K_{10}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{\phi \psi }^{e} } \right]^{\text{T}} \hfill \\ \end{aligned} $$
$$ \left[ {K_{42}^{e} } \right] = \left[ {K_{38}^{e} } \right] - \left[ {K_{41}^{e} } \right]\left[ {K_{26}^{e} } \right] $$
$$ \left[ {K_{43}^{e} } \right] = \left[ {K_{39}^{e} } \right] - \left[ {K_{41}^{e} } \right]\left[ {K_{27}^{e} } \right] $$
$$ \left[ {K_{44}^{e} } \right] = \left[ {K_{40}^{e} } \right] - \left[ {K_{41}^{e} } \right]\left[ {K_{28}^{e} } \right] $$
$$ \left[ {K_{45}^{e} } \right] = \left[ {K_{42}^{e} } \right] - \left[ {K_{44}^{e} } \right]\left[ {K_{36}^{e} } \right] $$
$$ \left[ {K_{46}^{e} } \right] = \left[ {K_{43}^{e} } \right] - \left[ {K_{44}^{e} } \right]\left[ {K_{37}^{e} } \right] $$
$$ \left[ {K_{47}^{e} } \right] = \left[ {K_{46}^{e} } \right]^{ - 1} \left[ {K_{45}^{e} } \right] $$
$$ \begin{aligned} \left[ {K_{48}^{e} } \right] = \left[ {K_{1}^{e} } \right] - \left[ {K_{5}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{19}^{e} } \right] \hfill \\ \left[ {K_{49}^{e} } \right] = \left[ {K_{2}^{e} } \right] - \left[ {K_{5}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{20}^{e} } \right] \hfill \\ \left[ {K_{50}^{e} } \right] = \left[ {K_{3}^{e} } \right] - \left[ {K_{5}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{21}^{e} } \right] \hfill \\ \left[ {K_{51}^{e} } \right] = \left[ {K_{4}^{e} } \right] - \left[ {K_{5}^{e} } \right]\left[ {K_{\psi \psi }^{e} } \right]^{ - 1} \left[ {K_{\phi \psi }^{e} } \right]^{\text{T}} \hfill \\ \end{aligned} $$
$$ \left[ {K_{52}^{e} } \right] = \left[ {K_{48}^{e} } \right] - \left[ {K_{51}^{e} } \right]\left[ {K_{26}^{e} } \right] $$
$$ \left[ {K_{53}^{e} } \right] = \left[ {K_{49}^{e} } \right] - \left[ {K_{51}^{e} } \right]\left[ {K_{27}^{e} } \right] $$
$$ \left[ {K_{54}^{e} } \right] = \left[ {K_{50}^{e} } \right] - \left[ {K_{51}^{e} } \right]\left[ {K_{28}^{e} } \right] $$
$$ \left[ {K_{55}^{e} } \right] = \left[ {K_{52}^{e} } \right] - \left[ {K_{54}^{e} } \right]\left[ {K_{36}^{e} } \right] $$
$$ \left[ {K_{56}^{e} } \right] = \left[ {K_{53}^{e} } \right] - \left[ {K_{54}^{e} } \right]\left[ {K_{37}^{e} } \right] $$
$$ \left[ {K_{\text{eq}}^{e} } \right] = \left[ {K_{55}^{e} } \right] - \left[ {K_{56}^{e} } \right]\left[ {K_{47}^{e} } \right] $$
$$ \left[ {K_{{{\text{rrs}}35}}^{e} } \right] = \left[ {K_{{{\text{rrs}}3}}^{e} } \right] + \left[ {K_{{{\text{rrs}}5}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rrs}}13}}^{e} } \right] = \left[ {K_{{{\text{rrs}}1}}^{e} } \right] + \left[ {K_{{{\text{rrs}}3}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rrs}}3513}}^{e} } \right] = \left[ {K_{{{\text{rrs}}35}}^{e} } \right] + \left[ {K_{{{\text{rrs}}13}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rts}}13}}^{e} } \right] = \left[ {K_{{{\text{rts}}1}}^{e} } \right] + \left[ {K_{{{\text{rts}}3}}^{e} } \right] $$
$$ \left[ {K_{{_{{{\text{r}}\psi {\text{s}}13}} }}^{e} } \right] = \left[ {K_{{_{{{\text{r}}\psi {\text{s}}1}} }}^{e} } \right] + \left[ {K_{{_{{{\text{r}}\psi {\text{s}}3}} }}^{e} } \right] $$
$$ \left[ {K_{{_{{{\text{r}}\phi {\text{s}}13}} }}^{e} } \right] = \left[ {K_{{_{{{\text{r}}\phi {\text{s}}1}} }}^{e} } \right] + \left[ {K_{{_{{{\text{r}}\phi {\text{s}}3}} }}^{e} } \right] $$
$$ \left[ {K_{\text{tbtbNL1}}^{e} } \right] = \left[ {K_{\text{tb1}}^{e} } \right] + \left[ {K_{\text{tbNL1}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rtb}}24}}^{e} } \right] = \left[ {K_{{{\text{rtb}}2}}^{e} } \right] + \left[ {K_{{{\text{rtb}}4}}^{e} } \right] $$
$$ \left[ {K_{{{\text{tbNLbNL1\_tbtbNL1}}}}^{e} } \right] = \left[ {K_{\text{tbNLbNL1}}^{e} } \right] + \left[ {K_{\text{tbtbNL1}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rbNL\_rtb}}24}}^{e} } \right] = \left[ {K_{{{\text{rbNL}}24}}^{e} } \right] + \left[ {K_{{{\text{rtb}}24}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rbNL\_rtb}}4}}^{e} } \right] = \left[ {K_{{{\text{rbNL}}4}}^{e} } \right] + \left[ {K_{{{\text{rtb}}4}}^{e} } \right] $$
$$ \left[ {K_{{{\text{bNL\_tb}}\phi 1}}^{e} } \right] = \left[ {K_{{{\text{bNL}}\phi 1}}^{e} } \right] + \left[ {K_{{{\text{tb}}\phi 1}}^{e} } \right] $$
$$ \left[ {K_{{{\text{bNL\_tb}}\psi 1}}^{e} } \right] = \left[ {K_{{{\text{bNL}}\psi 1}}^{e} } \right] + \left[ {K_{{{\text{tb}}\psi 1}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rrb}}57}}^{e} } \right] = \left[ {K_{{{\text{rrb}}5}}^{e} } \right] + \left[ {K_{{{\text{rrb}}7}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rtbrbNL}}4}}^{e} } \right] = \left[ {K_{{{\text{rtb}}4}}^{e} } \right] + \left[ {K_{{{\text{rbNL}}4}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rtbrbNL}}2}}^{e} } \right] = \left[ {K_{{{\text{rtb}}2}}^{e} } \right] + \left[ {K_{{{\text{rbNL}}2}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rtbrbNL}}24}}^{e} } \right] = \left[ {K_{{{\text{rtbrbNL}}2}}^{e} } \right] + \left[ {K_{{{\text{rtbrbNL}}4}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rrb}}35}}^{e} } \right] = \left[ {K_{{{\text{rrb}}3}}^{e} } \right] + \left[ {K_{{{\text{rrb}}5}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rrb}}5735}}^{e} } \right] = \left[ {K_{{{\text{rrb}}57}}^{e} } \right] + \left[ {K_{{{\text{rrb}}35}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rb}}\phi 24}}^{e} } \right] = \left[ {K_{{{\text{rb}}\phi 2}}^{e} } \right] + \left[ {K_{{{\text{rb}}\phi 4}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rb}}\psi 24}}^{e} } \right] = \left[ {K_{{{\text{rb}}\psi 2}}^{e} } \right] + \left[ {K_{{{\text{rb}}\psi 4}}^{e} } \right] $$
$$ \left[ {K_{{{\text{tbNLbNL}}1}}^{e} } \right] = \left[ {K_{{{\text{tbNL}}1}}^{e} } \right] + \left[ {K_{{{\text{bNL}}1}}^{e} } \right] $$
$$ \left[ {K_{{{\text{rbNL}}24}}^{e} } \right] = \left[ {K_{{{\text{rbNL}}2}}^{e} } \right] + \left[ {K_{\text{rbNL4}}^{e} } \right]. $$
(A-12)

The expressions for stiffness matrices are as follows:

$$ \left[ {K_{{{\text{rtb}}4}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{\text{b4}} } \right]} } \left[ {B_{\text{tb}} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rbNL}}4}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{{{\text{bNL}}4}} } \right]} } \left[ {B_{1} } \right] \, \left[ {B_{2} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rrb}}5}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{\text{b5}} } \right]} } \left[ {B_{\text{rb}} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rrb}}7}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{\text{b7}} } \right]} } \left[ {B_{\text{rb}} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rb}}\phi 4}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}\phi 4}} } \right]} } \left[ {B_{\phi } } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rb}}\psi 4}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}\psi 4}} } \right]} } \left[ {B_{\psi } } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rtb}}4}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}4}} } \right]} } \left[ {B_{\text{tb}} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rtb}}2}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}2}} } \right]} } \left[ {B_{\text{tb}} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rbNL}}2}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{\text{bNL2}} } \right]} } \left[ {B_{1} } \right] \, \left[ {B_{2} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rrb}}3}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{\text{b3}} } \right]} } \left[ {B_{\text{rb}} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rrb}}5}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{\text{b5}} } \right]} } \left[ {B_{\text{rb}} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rb}}\phi 2}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}\phi 2}} } \right]} } \left[ {B_{\phi } } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rb}}\psi 2}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}\psi 2}} } \right]} } \left[ {B_{\psi } } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{tbNL}}1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{tb}} } \right]^{\text{T}} \left[ {D_{{{\text{bNL}}1}} } \right]\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y} } $$
$$ \left[ {K_{{{\text{bNL}}1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{2} } \right]^{\text{T}} \left[ {B_{1} } \right]^{\text{T}} \left[ {D_{\text{bbNL1}} } \right]\left[ {B_{1} } \right]\left[ {B_{2} } \right]{\text{d}}x{\text{d}}y} } $$
$$ \left[ {K_{{{\text{bNL}}\phi 1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\phi } } \right]^{\text{T}} \left[ {D_{{{\text{bNL}}\phi 1}} } \right]} } \left[ {B_{1} } \right] \, \left[ {B_{2} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{bNL}}\psi 1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\psi } } \right]^{\text{T}} \left[ {D_{{{\text{bNL}}\psi 1}} } \right]} } \left[ {B_{1} } \right] \, \left[ {B_{2} } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{tb}}1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{tb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}1}} } \right]\left[ {B_{\text{tb}} } \right]{\text{d}}x{\text{d}}y} } $$
$$ \left[ {K_{{{\text{tb}}\phi 1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{tb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}\phi 1}} } \right]\left[ {B_{\phi } } \right]{\text{d}}x{\text{d}}y} } $$
$$ \left[ {K_{{{\text{tb}}\psi 1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{tb}} } \right]^{\text{T}} \left[ {D_{{{\text{b}}\psi 1}} } \right]} } \left[ {B_{\psi } } \right]{\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{_{{{\text{rts}}3}} }}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}3}} } \right]\left[ {B_{\text{ts}} } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{rrs}}3}} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}3}} } \right]\left[ {B_{\text{rs}} } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{_{\text{rrs5}} }}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}5}} } \right]\left[ {B_{\text{rs}} } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{r}}\psi {\text{s}}3}} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}\psi 3}} } \right]\left[ {B_{\psi } } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{_{{{\text{r}}\phi {\text{s}}3}} }}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}\phi 3}} } \right]\left[ {B_{\phi } } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{ts}}\phi 1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{ts}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}\phi 1}} } \right]} } \left[ {B_{\phi } } \right]{\text{d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{ts}}\psi 1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{ts}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}\psi 1}} } \right]} } \left[ {B_{\psi } } \right]{\text{d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{r}}\phi {\text{s}}1}}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}\phi 1}} } \right]\left[ {B_{\phi } } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{r}}\psi {\text{s}}1}} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{s\psi 1} } \right]\left[ {B_{\psi } } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{_{\text{rts1}} }}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{\text{s1}} } \right]\left[ {B_{\text{ts}} } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{_{\text{rrs1}} }}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{\text{s1}} } \right]\left[ {B_{\text{rs}} } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{{\text{ts}}1}} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{ts}} } \right]^{\text{T}} \left[ {D_{\text{s1}} } \right]\left[ {B_{\text{ts}} } \right]} } {\text{ d}}x{\text{d}}y $$
$$ \left[ {K_{{_{{{\text{rts}}3}} }}^{e} } \right] = \int\limits_{0}^{a} {\int\limits_{0}^{b} {\left[ {B_{\text{rs}} } \right]^{\text{T}} \left[ {D_{{{\text{s}}3}} } \right]\left[ {B_{\text{ts}} } \right]} } {\text{ d}}x{\text{d}}y. $$
(A-13)

The various rigidity matrices contributing to Eq. (A-13) can be denoted as follows:

$$ \left[ {D_{{{\text{b}}1}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ {C_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{bbNL}}1}} } \right] = \frac{1}{4}\left[ {D_{\text{b1}} } \right] $$
$$ \left[ {D_{\text{bNL1}} } \right] = \frac{1}{2}\left[ {D_{\text{b1}} } \right] $$
$$ \left[ {D_{{{\text{b}}2}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {z\left[ {C_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{bNL}}2}} } \right] = \frac{1}{2}\left[ {D_{\text{b2}} } \right] $$
$$ \left[ {D_{{{\text{b}}3}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {z^{2} \left[ {C_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{\text{b4}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{1} z^{3} \left[ {C_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{bNL}}4}} } \right] = \frac{1}{2}\left[ {D_{\text{b4}} } \right] $$
$$ \left[ {D_{{{\text{b}}5}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{1} z^{4} \left[ {C_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{b}}7}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{1}^{2} z^{6} \left[ {C_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{b}}\phi 1}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ {e_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{bNL}}\phi 1}} } \right] = \left[ {D_{{{\text{b}}\phi 1}} } \right] $$
$$ \left[ {D_{{{\text{b}}\phi 2}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {z\left[ {e_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{b}}\phi 4}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{1} z^{3} \left[ {e_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{{{\text{b}}\psi 1}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ {q_{\text{b}} } \right]} {\text{d}}z, $$
$$ \left[ {D_{{{\text{bNL}}\psi 1}} } \right] = \left[ {D_{{{\text{b}}\psi 1}} } \right] $$
$$ \left[ {D_{{{\text{b}}\psi 2}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {z\left[ {q_{\text{b}} } \right]} {\text{d}}z, $$
$$ \left[ {D_{{{\text{b}}\psi 4}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{1} z^{3} \left[ {q_{\text{b}} } \right]} {\text{d}}z $$
$$ \left[ {D_{\text{s1}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ {C_{\text{s}} } \right]} {\text{d}}z, $$
$$ \left[ {D_{{{\text{s}}3}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{2} z^{2} \left[ {C_{\text{s}} } \right]} {\text{d}}z{ ,} $$
$$ \left[ {D_{{{\text{s}}5}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{2}^{2} z^{4} \left[ {C_{\text{s}} } \right]} {\text{d}}z{ ,} $$
$$ \left[ {D_{{{\text{s}}\phi 1}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ {e_{\text{s}} } \right]} {\text{d}}z, $$
$$ \left[ {D_{{{\text{s}}\phi 3}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{2} z^{2} \left[ {e_{\text{s}} } \right]} {\text{d}}z, $$
$$ \left[ {D_{{{\text{s}}\psi 1}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ {q_{\text{s}} } \right]} {\text{d}}z \, $$
$$ \left[ {D_{{{\text{s}}\psi 3}} } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {c_{2} z^{2} \left[ {q_{\text{s}} } \right]} {\text{d}}z $$
$$ \left[ {D_{\phi \phi } } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ \eta \right]} {\text{d}}z $$
$$ \left[ {D_{\psi \psi } } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ \mu \right]} {\text{d}}z{ ,} $$
$$ \left[ {D_{\phi \psi } } \right] = \int\limits_{{{{ - h} \mathord{\left/ {\vphantom {{ - h} 2}} \right. \kern-0pt} 2}}}^{{{h \mathord{\left/ {\vphantom {h 2}} \right. \kern-0pt} 2}}} {\left[ m \right]} {\text{d}}z. $$
(A-14)

The derivative of shape function matrices appearing in the FE formulation can be represented by

$$ \begin{aligned} \left[ {B_{\text{tb}} } \right] = \left[ {\begin{array}{*{20}c} {N_{i,x} } & 0 & 0 \\ 0 & {N_{i,y} } & 0 \\ {N_{i,y} } & {N_{i,x} } & 0 \\ \end{array} } \right], \, \left[ {B_{\text{rb}} } \right] = \left[ {\begin{array}{*{20}c} {N_{i,x} } & 0 \\ 0 & {N_{i,y} } \\ {N_{i,y} } & {N_{i,x} } \\ \end{array} } \right], \, \left[ {B_{\text{ts}} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & {N_{i,x} } \\ 0 & 0 & {N_{i,y} } \\ \end{array} } \right] , { }\left[ {B_{\text{rs}} } \right] = \left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right] \hfill \\ \left[ {B_{1} } \right] = \left[ {\begin{array}{*{20}c} {w_{0,x} } & 0 & {w_{0,y} } \\ 0 & {w_{0,y} } & {w_{0,x} } \\ \end{array} } \right]^{T} ,\left[ {B_{2} } \right] = \left[ {\begin{array}{*{20}c} {B_{21} } & {B_{22} } & \cdots & {B_{28} } \\ \end{array} } \right]. \hfill \\ \end{aligned} $$
(A-15)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, V., Harursampath, D. Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Engineering with Computers 38, 1029–1051 (2022). https://doi.org/10.1007/s00366-020-01098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01098-5

Keywords

Navigation