Skip to main content

Polygonal topology optimization for Reissner–Mindlin plates

Abstract

Polygonal finite elements have recently been widely implemented in topology optimization problems due to their great advantages such as highly accurate solutions and flexibility in mesh generation of arbitrary-shaped design domains. In this study, a polygonal topology optimization for Reissner–Mindlin (R–M) plate with minimizing the compliance under a volume constraint is proposed. In order to avoid the critical transverse shear locking phenomenon arising in the R–M plate theory, a simple and efficient locking-free polygonal R–M plate element (PRMn) based on the Timoshenko’s beam assumptions is applied to solve the R–M plate topology optimization problems. In our proposed method, we use the solid isotropic material with penalization model, the standard optimality criteria methods and density filter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    MathSciNet  MATH  Google Scholar 

  2. Bendsøe MP, Sigmund O (2003) Topology optimization - theory, methods and applications, EUA. Springer, New York

    Google Scholar 

  3. Xie YM, Steven GP (1997) Evolutionary structural optimization. Springer, Berlin

    MATH  Google Scholar 

  4. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    MathSciNet  MATH  Google Scholar 

  5. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    MathSciNet  MATH  Google Scholar 

  6. Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization, ESAIM: control. Optim Calc Var 9:19–48

    MathSciNet  MATH  Google Scholar 

  7. Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48(6):1031–1055

    MathSciNet  Google Scholar 

  8. Deaton JD, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    MathSciNet  Google Scholar 

  9. Tenek LH, Hagiwara I (1992) Optimization of material distribution within isotropic and anisotropic plates using homogenization. Comput Methods Appl Mech Eng 109:155–167

    MATH  Google Scholar 

  10. Tenek LH, Hagiwara I (1994) Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization. Comput Methods Appl Mech Eng 115:111–124

    MathSciNet  Google Scholar 

  11. Díaz AR, Lipton R, Soto CA (1995) A new formulation of the problem of optimum reinforcement of Reissner–Mindlin plates. Comput Methods Appl Mech Eng 123:121–139

    MathSciNet  MATH  Google Scholar 

  12. Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72:535–563

    MATH  Google Scholar 

  13. Belblidia F, Lee JEB, Rechak S, Hinton E (2001) Topology optimization of plate structures using single- or three-layered artificial material model. Adv Eng Softw 32:159–168

    MATH  Google Scholar 

  14. Pedersen NL (2002) Topology optimization of laminated plates with prestress. Comput Struct 80:559–570

    Google Scholar 

  15. El-Sabbagh A, Akl W, Baz A (2008) Topology optimization of periodic Mindlin plates. Finite Elem Anal Des 44:439–449

    MathSciNet  Google Scholar 

  16. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  17. Zienkiewicz OC, Taylor RL (2000) The finite element method, vol. 2. Solid mechanics. 5. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

  18. Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in finite element analysis of plates. Nucl Eng Des 46:203–222

    Google Scholar 

  19. Boroomand B, Barekatein AR (2009) On topology optimization of linear and nonlinear plate problems. Struct Multidiscip Optim 39:17–27

    MathSciNet  MATH  Google Scholar 

  20. Hughes TJR, Cohen M (1978) The “heterosis” finite element for plate bending. Comput Struct 9:445–450

    MATH  Google Scholar 

  21. Long CS, Loveday PW, Groenwold AA (2009) Effects of finite element formulation on optimal plate and shell structural topologies. Finite Elem Anal Des 45:817–825

    Google Scholar 

  22. Batoz J-L, Tahar MB (1982) Evaluation of a new quadrilateral thin plate bending element. Int J Numer Meth Eng 18:1655–1677

    MATH  Google Scholar 

  23. Dvorkin E, Bathe K-J (1984) A continuum mechanics based four node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Google Scholar 

  24. Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Meth Eng 21:367–383

    MATH  Google Scholar 

  25. Ye HL, Wang WW, Chen N, Sui YK (2016) Plate/shell topological optimization subjected to linear buckling constraints by adopting composite exponential filtering function. Acta Mech Sin 32(4):649–658

    MathSciNet  MATH  Google Scholar 

  26. Tessler A, Hughes TJR (1985) A three-node Mindlin plate element with improved transverse shear. Comput Methods Appl Mech Eng 50:71–101

    MATH  Google Scholar 

  27. Soh AK, Long ZF, Cen S (1999) A new nine DOF triangular element for analysis of thick and thin plates. Comput Mech 24(5):408–417

    MATH  Google Scholar 

  28. Bletzinger KU, Bischoff M, Ramm E (2000) A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput Struct 75:321–334

    Google Scholar 

  29. Lee PS, Bathe K-J (2004) Development of MITC isotropic triangular shell finite elements. Comput Struct 82(11–12):945–962

    Google Scholar 

  30. Nguyen-Hoang S, Phung-Van P, Natarajan S, Kim H-G (2016) A combined scheme of edge-based and node-based smoothed finite element methods for Reissner–Mindlin flat shells. Eng Comput 32:267–284

    Google Scholar 

  31. Nguyen-Hoang S, Sohn D, Kim H-G (2017) A new polyhedral element for the analysis of hexahedral-dominant finite element models and its application to nonlinear solid mechanics problems. Comput Methods Appl Mech Eng 324:248–277

    MathSciNet  MATH  Google Scholar 

  32. Nguyen SH, Kim H-G (2019) Level set based shape optimization using trimmed hexahedral meshes. Comput Methods Appl Mech Eng 345:555–583

    MathSciNet  MATH  Google Scholar 

  33. Nguyen SH, Kim H-G (2020) Stress-constrained shape and topology optimization with the level set method using trimmed hexahedral meshes. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2020.113061

    MathSciNet  Article  MATH  Google Scholar 

  34. Nguyen-Xuan H, Nguyen-Hoang S, Rabczuk T, Hackl K (2017) A polytree-based adaptive approach to limit analysis of cracked structures. Comput Methods Appl Mech Eng 313:1006–1039

    MathSciNet  MATH  Google Scholar 

  35. Nguyen-Xuan H (2017) A polygonal finite element method for plate analysis. Comput Struct 188:45–62

    Google Scholar 

  36. Nguyen NV, Nguyen HX, Phan D-H, Nguyen-Xuan H (2017) A polygonal finite element method for laminated composite plates. Int J Mech Sci 133:863–882

    Google Scholar 

  37. Nguyen NV, Nguyen HX, Lee S, Nguyen-Xuan H (2018) Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates. Adv Eng Softw 126:110–126

    Google Scholar 

  38. Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(2–27):3443–3459

    MATH  Google Scholar 

  39. Liu GR, Quek SS (2002) The finite element method: a practical course. Butterworth Heinemann, Oxford

    MATH  Google Scholar 

  40. Floater MS, Gillette A, Sukumar N (2014) Gradient bounds for Wachspress coordinates on polytopes. SIAM Jf Numer Anal 52(1):515–532

    MathSciNet  MATH  Google Scholar 

  41. Floater MS (2003) Mean value coordinates. Comput Aided Geom Des 20:19–27

    MathSciNet  MATH  Google Scholar 

  42. Sukumar N, Moran B, Belytschko T (1998) The natural element method in solid mechanics. Int J Numer Meth Eng 43(5):839–887

    MathSciNet  MATH  Google Scholar 

  43. Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

    Google Scholar 

  44. Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    MATH  Google Scholar 

  45. Talischi C, Paulino GH, Pereira A, Menezes IFM (2012) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidiscip Optim 45(3):329–357

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Huynh Phan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham, QH., Phan, DH. Polygonal topology optimization for Reissner–Mindlin plates. Engineering with Computers 38, 141–154 (2022). https://doi.org/10.1007/s00366-020-01047-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01047-2

Keywords

  • Topology optimization
  • Polygonal finite elements
  • Reissner–Mindlin plates
  • Solid isotropic material with penalization (SIMP) method
  • Shear locking
  • Polygonal Reissner–Mindlin plate element (PRMn)