Skip to main content

Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties

Abstract

The stability analysis of cantilevered curved microtubules in axons regarding various size elements and using the generalized differential quadrature method for solving equations is reported. The impacts of covering MAP Tau proteins along with cytoplasm are taken into account as the elastic medium. Curved cylindrical nanoshell considering thick wall is used to model the microtubules. The factor of length scale (l/R = 0.2) used in modified couple stress theory would result in more accuracy when it comes to comparison with experiments, while alternative theories presented in this paper provide less precise outcomes. Due to the reported precise results, at the lower value of the time-dependent viscoelastic factor (\({\tau }_{s})\) by rising the size-dependent factor, the frequency response of the cantilever microtubule increases and this relation between the size-dependent parameter and the structure’s natural frequency is changed from direct to indirect for the higher amount of the time-based viscoelastic factor that scientists should attend to this matter when it comes to the microtubule. Furthermore, physical neighboring situations in a cell will be prominent in microtubules’ dynamic stability responses, such as membrane and cell-matrix. Since microtubules are likely to be applied as biosensors, this feature could be employed to disclose virulent tumors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Zhao X, Li D, Yang B, Ma C, Zhu Y, Chen H (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    Google Scholar 

  2. 2.

    Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946

    Google Scholar 

  3. 3.

    Zhao X, Zhang X, Cai Z, Tian X, Wang X, Huang Y et al (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    Google Scholar 

  4. 4.

    Xu X, Chen H-L (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18:797–807

    Google Scholar 

  5. 5.

    Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H et al (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl-Based Syst 96:61–75

    Google Scholar 

  6. 6.

    Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z et al (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  7. 7.

    Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203

    MathSciNet  Google Scholar 

  8. 8.

    Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine. Appl Soft Comput 86:105884

    Google Scholar 

  9. 9.

    Gao W, Dimitrov D, Abdo H (2018) Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete Continuous Dyn Syst S 12:711–721

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Gao W, Guirao JLG, Basavanagoud B, Wu J (2018) Partial multi-dividing ontology learning algorithm. Inf Sci 467:35–58

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Gao W, Wang W, Dimitrov D, Wang Y (2018) Nano properties analysis via fourth multiplicative ABC indicator calculating. Arab J Chem 11:793–801

    Google Scholar 

  12. 12.

    Gao W, Wu H, Siddiqui MK, Baig AQ (2018) Study of biological networks using graph theory. Saudi J Biol Sci 25:1212–1219

    Google Scholar 

  13. 13.

    Gao W, Guirao JLG, Abdel-Aty M, Xi W (2019) An independent set degree condition for fractional critical deleted graphs. Discrete Continuous Dyn Syst S 12:877–886

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Hawkins T, Mirigian M, Yasar MS, Ross JL (2010) Mechanics of microtubules. J Biomech 43:23–30

    Google Scholar 

  15. 15.

    Brouhard GJ, Rice LM (2018) Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol 19:451–463

    Google Scholar 

  16. 16.

    Beni YT, Zeverdejani MK, Mehralian F (2019) Using a new size dependent orthotropic elastic shell model for the investigation of free vibration of protein microtubules. Int J Acoust Vib 24:85–96

    Google Scholar 

  17. 17.

    Bachmann S, Froese R, Cytrynbaum EN (2019) A buckling instability and its influence on microtubule orientation in plant cells. SIAM J Appl Math 79:2132–2149

    MathSciNet  MATH  Google Scholar 

  18. 18.

    Ntafam PN. Docteur de la communaute université grenoble alpES

  19. 19.

    Amos LA, Schlieper D (2005) Microtubules and maps. Adv Protein Chem 71:257–298

    Google Scholar 

  20. 20.

    Long AF, Kuhn J, Dumont S (2019) The mammalian kinetochore–microtubule interface: robust mechanics and computation with many microtubules. Curr Opin Cell Biol 60:60–67

    Google Scholar 

  21. 21.

    Tolić IM, Gerlich DW (2019) Spindle mechanics and chromosome segregation. Mol Biol Cell 30:735–736

    Google Scholar 

  22. 22.

    Priya R, Kavitha L, Gopi D (2019) Dynamic instability in neuronal microtubules. Mater Today Proc. https://doi.org/10.1016/j.matpr.2019.07.312

    Article  Google Scholar 

  23. 23.

    Qiao W, Moayedi H, Foong LK (2020) Nature-inspired hybrid techniques of IWO, DA, ES, GA, and ICA, validated through a k-fold validation process predicting monthly natural gas consumption. Energy Buildings. https://doi.org/10.1016/j.enbuild.2020.110023

    Article  Google Scholar 

  24. 24.

    Weibiao Q, Bingfan L, Zhangyang K (2019) Differential scanning calorimetry and electrochemical tests for the analysis of delamination of 3PE coatings. Int J Electrochem Sci 14:7389–7400

    Google Scholar 

  25. 25.

    Ghorbanpour Arani A, Abdollahian M, Ghorbanpour Arani A (2015) Modified Couple Stress Theory for Vibration of Embedded Bioliquid-Filled Microtubules under Walking a Motor Protein Including Surface Effects. J Solid Mech 7:458–476

    MATH  Google Scholar 

  26. 26.

    Zhang J, Wang C (2016) Free vibration analysis of microtubules based on the molecular mechanics and continuum beam theory. Biomech Model Mechanobiol 15:1069–1078

    Google Scholar 

  27. 27.

    Safeer M, Taj M, Abbas SS (2019) Effect of viscoelastic medium on wave propagation along protein microtubules. AIP Adv 9:045108

    Google Scholar 

  28. 28.

    Xiang P, Zhang L, Liew K (2016) A mesh-free computational framework for predicting vibration behaviors of microtubules in an elastic medium. Compos Struct 149:41–53

    Google Scholar 

  29. 29.

    Civalek Ö, Demir C (2016) A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl Math Comput 289:335–352

    MathSciNet  MATH  Google Scholar 

  30. 30.

    Beni YT, Zeverdejani MK (2015) Free vibration of microtubules as elastic shell model based on modified couple stress theory. J Mech Med Biol 15:1550037

    Google Scholar 

  31. 31.

    Baninajjaryan A, Beni YT (2015) Theoretical study of the effect of shear deformable shell model, elastic foundation and size dependency on the vibration of protein microtubule. J Theor Biol 382:111–121

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Arani AG, Abdollahian M, Jalaei M (2015) Vibration of bioliquid-filled microtubules embedded in cytoplasm including surface effects using modified couple stress theory. J Theor Biol 367:29–38

    MathSciNet  MATH  Google Scholar 

  33. 33.

    Farajpour A, Rastgoo A (2017) Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory. Results Phys 7:1367–1375

    Google Scholar 

  34. 34.

    Kamali M, Shamsi M, Saidi A (2018) Surface effect on buckling of microtubules in living cells using first-order shear deformation shell theory and standard linear solid model. Mech Res Commun 92:111–117

    Google Scholar 

  35. 35.

    Beni YT, Zeverdejani MK, Mehralian F (2017) Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory. Math Biosci 292:18–29

    MathSciNet  MATH  Google Scholar 

  36. 36.

    Sedighi HM, Sheikhanzadeh A (2017) Static and dynamic pull-in instability of nano-beams resting on elastic foundation based on the nonlocal elasticity theory. Chin J Mech Eng 30:385–397

    Google Scholar 

  37. 37.

    Salamat D, Sedighi HM (2017) The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle. J Appl Comput Mech 3:208–217

    Google Scholar 

  38. 38.

    Ghodrati B, Yaghootian A, Ghanbar Zadeh A, Mohammad-Sedighi H (2018) Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories. Waves Random Complex media 28:15–34

    MathSciNet  Google Scholar 

  39. 39.

    Jamali M, Shojaee T, Mohammadi B, Kolahchi R (2019) Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT. Adv Nano Res 7:405–417

    Google Scholar 

  40. 40.

    Sedighi HM (2020) Divergence and flutter instability of magneto-thermo-elastic C-BN hetero-nanotubes conveying fluid. Acta Mech Sin. https://doi.org/10.1007/s10409-019-00924-4

    Article  Google Scholar 

  41. 41.

    Sedighi HM, Yaghootian A (2016) Dynamic instability of vibrating carbon nanotubes near small layers of graphite sheets based on nonlocal continuum elasticity. J Appl Mech Tech Phys 57:90–100

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Soheilypour M, Peyro M, Peter SJ, Mofrad MR (2015) Buckling behavior of individual and bundled microtubules. Biophys J 108:1718–1726

    Google Scholar 

  43. 43.

    Batou B, Nebab M, Bennai R, Atmane HA, Tounsi A, Bouremana M (2019) Wave dispersion properties in imperfect sigmoid plates using various HSDTs. Steel Compos Struct 33:699

    Google Scholar 

  44. 44.

    Salah F, Boucham B, Bourada F, Benzair A, Bousahla AA, Tounsi A (2019) Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model. Steel Compos Struct 33:805

    Google Scholar 

  45. 45.

    Sahmani S, Fattahi A, Ahmed N (2020) Develop a refined truncated cubic lattice structure for nonlinear large-amplitude vibrations of micro/nano-beams made of nanoporous materials. Eng Comput 36:359–375

    Google Scholar 

  46. 46.

    Hajmohammad MH, Nouri AH, Zarei MS, Kolahchi R (2019) A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment. Eng Comput 35:1141–1157

    Google Scholar 

  47. 47.

    Ayat H, Kellouche Y, Ghrici M, Boukhatem B (2018) Compressive strength prediction of limestone filler concrete using artificial neural networks. Adv Comput Des 3:289–302

    Google Scholar 

  48. 48.

    Behera S, Kumari P (2018) Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory. Adv Comput Design 3:213–232

    Google Scholar 

  49. 49.

    Narwariya M, Choudhury A, Sharma AK (2018) Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM. Adv Comput Design 3:113–132

    Google Scholar 

  50. 50.

    Sedighi HM, Reza A, Zare J (2011) Study on the frequency–amplitude relation of beam vibration. Int J Phys Sci 6:8051–8056

    Google Scholar 

  51. 51.

    Ghorbanpour Arani A, Rousta Navi B, Mohammadimehr M, Niknejad S, Ghorbanpour Arani A, Hosseinpour A (2019) Pull-in instability of MSGT piezoelectric polymeric FG-SWCNTs reinforced nanocomposite considering surface stress effect. J Solid Mech 11:759–777

    Google Scholar 

  52. 52.

    Ghorbanpour Arani A, Emdadi M, Ashrafi H, Mohammadimehr M, Niknejad S, Ghorbanpour Arani A et al (2019) Analysis of viscoelastic functionally graded sandwich plates with CNT reinforced composite face sheets on viscoelastic foundation. J Solid Mech 11:690–706

    Google Scholar 

  53. 53.

    Aria AI, Biglari H (2018) Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory. Appl Math Comput 321:313–332

    MathSciNet  MATH  Google Scholar 

  54. 54.

    Farajpour A, Rastgoo A, Mohammadi M (2017) Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Phys B 509:100–114

    Google Scholar 

  55. 55.

    Akgöz B, Civalek Ö (2011) Application of strain gradient elasticity theory for buckling analysis of protein microtubules. Curr Appl Phys 11:1133–1138

    MATH  Google Scholar 

  56. 56.

    Civalek Ö (2017) Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos B Eng 111:45–59

    Google Scholar 

  57. 57.

    Bahaadini R, Hosseini M, Amiri M (2020) Dynamic stability of viscoelastic nanotubes conveying pulsating magnetic nanoflow under magnetic field. Eng Comput. https://doi.org/10.1007/s00366-020-00980-6

    Article  Google Scholar 

  58. 58.

    Demir Ç, Civalek Ö (2017) On the analysis of microbeams. Int J Eng Sci 121:14–33

    MathSciNet  MATH  Google Scholar 

  59. 59.

    Ebrahimi F, Hosseini SH (2020) Nonlinear dynamics and stability of viscoelastic nanoplates considering residual surface stress and surface elasticity effects: a parametric excitation analysis. Eng Comput. https://doi.org/10.1007/s00366-019-00906-x

    Article  Google Scholar 

  60. 60.

    Sahmani S, Fattahi A, Ahmed N (2019) Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Eng Comput 35:1173–1189

    Google Scholar 

  61. 61.

    Sofiyev AH, Avcar M (2010) The stability of cylindrical shells containing an FGM layer subjected to axial load on the Pasternak foundation. Engineering 2:228

    Google Scholar 

  62. 62.

    Sofiyev A, Alizada A, Akin Ö, Valiyev A, Avcar M, Adiguzel S (2012) On the stability of FGM shells subjected to combined loads with different edge conditions and resting on elastic foundations. Acta Mech 223:189–204

    MathSciNet  MATH  Google Scholar 

  63. 63.

    Wu Q, Chen H, Gao W (2019) Nonlocal strain gradient forced vibrations of FG-GPLRC nanocomposite microbeams. Eng Comput. https://doi.org/10.1007/s00366-019-00794-1

    Article  Google Scholar 

  64. 64.

    Yang X, Sahmani S, Safaei B (2020) Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput. https://doi.org/10.1007/s00366-019-00901-2

    Article  Google Scholar 

  65. 65.

    Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct 149:106669

    Google Scholar 

  66. 66.

    Ghazanfari A, Soleimani SS, Keshavarzzadeh M, Habibi M, Assempuor A, Hashemi R (2019) Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1662310

    Article  Google Scholar 

  67. 67.

    Alipour M, Torabi MA, Sareban M, Lashini H, Sadeghi E, Fazaeli A, Habibi M, Hashemi R (2019) Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1633343

    Article  Google Scholar 

  68. 68.

    Hosseini S, Habibi M, Assempour A (2018) Experimental and numerical determination of forming limit diagram of steel-copper two-layer sheet considering the interface between the layers. Modares Mech Eng 18:174–181

    Google Scholar 

  69. 69.

    Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2018) Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. Proc Inst Mech Eng L J Mater Design Appl 232:625–636

    Google Scholar 

  70. 70.

    Habibi M, Payganeh G (2018) Experimental and finite element investigation of titanium tubes hot gas forming and production of square cross-section specimens. Aerosp Mech J 14(2(52)):89–99

    Google Scholar 

  71. 71.

    Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Google Scholar 

  72. 72.

    Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R (2017) Determination of forming limit diagram using two modified finite element models. Mech Eng 48:141–144

    Google Scholar 

  73. 73.

    Ghazanfari A, Assempour A, Habibi M, Hashemi R (2016) Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak–Kuczynski model. Modares Mech Eng 16:137–143

    Google Scholar 

  74. 74.

    Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25:382–389

    Google Scholar 

  75. 75.

    Fazaeli A, Habibi M, Ekrami A (2016) Experimental and Finite Element Comparison of Mechanical Properties and Formability of Dual Phase Steel and Ferrite-Pearlite Steel With the Same Chemical Composition. Metall Eng 19(2):84–93

    Google Scholar 

  76. 76.

    Ebrahimi F, Mohammadi K, Barouti MM, Habibi M (2019) Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media 1–27

  77. 77.

    Hashemi HR, Alizadeh AA, Oyarhossein MA, Shavalipour A, Makkiabadi M, Habibi M (2019) Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure. Waves Random Complex Media. https://doi.org/10.1080/17455030.2019.1662968

    Article  Google Scholar 

  78. 78.

    Modaresahmadi S, Hosseinpour A, Williams WB (2019) Fatigue life prediction of a coaxial multi-stage magnetic gear. In: 2019 IEEE Texas power and energy conference (TPEC), pp 1-6

  79. 79.

    Ghadiri M, Safarpour H (2016) Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl Phys A 122:833

    Google Scholar 

  80. 80.

    Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin Walled Struct 150:106683

    Google Scholar 

  81. 81.

    Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. https://doi.org/10.1007/s00366-020-00949-5

    Article  Google Scholar 

  82. 82.

    Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. Int J Appl Mech

  83. 83.

    Zhang X, Shamsodin M, Wang H, Noormohammadi Arani O, Khan AM, Habibi M, Al-Furjan MSH (2020) Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1760939

    Article  Google Scholar 

  84. 84.

    Safarpour H, Barooti M, Ghadiri M (2019) Influence of rotation on vibration behavior of a functionally graded moderately thick cylindrical nanoshell considering initial hoop tension. J Solid Mech 11:254–271

    Google Scholar 

  85. 85.

    Ebrahimi F, Safarpour H (2018) Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects. Wind Struct 27:431–438

    Google Scholar 

  86. 86.

    Mohammadi K, Barouti MM, Safarpour H, Ghadiri M (2019) Effect of distributed axial loading on dynamic stability and buckling analysis of a viscoelastic DWCNT conveying viscous fluid flow. J Braz Soc Mech Sci Eng 41:93

    Google Scholar 

  87. 87.

    SafarPour H, Hosseini M, Ghadiri M (2017) Influence of three-parameter viscoelastic medium on vibration behavior of a cylindrical nonhomogeneous microshell in thermal environment: an exact solution. J Therm Stresses 40:1353–1367

    Google Scholar 

  88. 88.

    Safarpour H, Mohammadi K, Ghadiri M, Barooti MM (2018) Effect of porosity on flexural vibration of CNT-reinforced cylindrical shells in thermal environment using GDQM. Int J Struct Stab Dyn 18:1850123

    MathSciNet  Google Scholar 

  89. 89.

    Safarpour H, Mohammadi K, Ghadiri M (2017) Temperature-dependent vibration analysis of a FG viscoelastic cylindrical microshell under various thermal distribution via modified length scale parameter: a numerical solution. J Mech Behav Mater 26:9–24

    Google Scholar 

  90. 90.

    SafarPour H, Ghanbari B, Ghadiri M (2019) Buckling and free vibration analysis of high speed rotating carbon nanotube reinforced cylindrical piezoelectric shell. Appl Math Model 65:428–442

    MathSciNet  MATH  Google Scholar 

  91. 91.

    Shojaeefard M, Mahinzare M, Safarpour H, Googarchin HS, Ghadiri M (2018) Free vibration of an ultra-fast-rotating-induced cylindrical nano-shell resting on a Winkler foundation under thermo-electro-magneto-elastic condition. Appl Math Model 61:255–279

    MathSciNet  MATH  Google Scholar 

  92. 92.

    Ghadiri M, SafarPour H (2017) Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. J Therm Stresses 40:55–71

    Google Scholar 

  93. 93.

    Ghadiri M, Shafiei N, Safarpour H (2017) Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol 23:1045–1065

    Google Scholar 

  94. 94.

    SafarPour H, Ghadiri M (2017) Critical rotational speed, critical velocity of fluid flow and free vibration analysis of a spinning SWCNT conveying viscous fluid. Microfluid Nanofluid 21:22

    Google Scholar 

  95. 95.

    Barooti MM, Safarpour H, Ghadiri M (2017) Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations. Eur Phys J Plus 132:6

    Google Scholar 

  96. 96.

    SafarPour H, Mohammadi K, Ghadiri M, Rajabpour A (2017) Influence of various temperature distributions on critical speed and vibrational characteristics of rotating cylindrical microshells with modified lengthscale parameter. Eur Phys J Plus 132:281

    Google Scholar 

  97. 97.

    Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1719509

    Article  Google Scholar 

  98. 98.

    Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135:144

    Google Scholar 

  99. 99.

    Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2020) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 26(2):461–473. https://doi.org/10.1007/s00542-019-04542-9

    Article  Google Scholar 

  100. 100.

    Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadiarani O, Habibi M, Safarpour H, Foong LK (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech. https://doi.org/10.1142/S1758825120500106

    Article  Google Scholar 

  101. 101.

    Shokrgozar A, Safarpour H, Habibi M (2020) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng C J Mech Eng Sc 234:512–529

    Google Scholar 

  102. 102.

    Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H, Babaei B, Safarpour H (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1705166

    Article  Google Scholar 

  103. 103.

    Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.17014900

    Article  Google Scholar 

  104. 104.

    Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1697932

    Article  Google Scholar 

  105. 105.

    Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos B Eng 175:107125

    Google Scholar 

  106. 106.

    Mohammadgholiha M, Shokrgozar A, Habibi M, Safarpour H (2019) Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. J Vib Control 25:2627–2640

    MathSciNet  Google Scholar 

  107. 107.

    Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35:1375–1389

    Google Scholar 

  108. 108.

    Safarpour H, Hajilak ZE, Habibi M (2019) A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15:569–583

    Google Scholar 

  109. 109.

    Esmailpoor Hajilak Z, Pourghader J, Hashemabadi D, Sharifi Bagh F, Habibi M, Safarpour H (2019) Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Design Struct Mach 47:521–545

    Google Scholar 

  110. 110.

    Ebrahimi F, Hajilak ZE, Habibi M, Safarpour H (2019) Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc Inst Mech Eng C J Mech Eng Sci 233:4590–4605

    Google Scholar 

  111. 111.

    Mohammadi A, Lashini H, Habibi M, Safarpour H (2019) Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. J Solid Mech 11:440–453

    Google Scholar 

  112. 112.

    Habibi M, Hashemabadi D, Safarpour H (2019) Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur Phys J Plus 134:307

    Google Scholar 

  113. 113.

    Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H (2019) Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math Appl 77:2608–2626

    MathSciNet  MATH  Google Scholar 

  114. 114.

    Habibi M, Mohammadgholiha M, Safarpour H (2019) Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J Braz Soc Mech Sci Eng 41:221

    Google Scholar 

  115. 115.

    Safarpour H, Pourghader J, Habibi M (2019) Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator. J Vib Control 25:1543–1557

    MathSciNet  Google Scholar 

  116. 116.

    Safarpour H, Ghanizadeh SA, Habibi M (2018) Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory. Eur Phys J Plus 133:532

    Google Scholar 

  117. 117.

    Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and gdqem for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  118. 118.

    Cheshmeh E, Karbon M, Eyvazian A, Jung DW, Habibi M, Safarpour M (2020) Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1744005

    Article  Google Scholar 

  119. 119.

    Oyarhossein MA, A. a. Alizadeh, M. Habibi, M. Makkiabadi, M. Daman, H. Safarpour, et al (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10:5616

    Google Scholar 

  120. 120.

    Najaafi N, Jamali M, Habibi M, Sadeghi S, Jung DW, Nabipour N (2020) Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1751297

    Article  Google Scholar 

  121. 121.

    Abdelmalek Z, Karbon M, Eyvazian A, Foroughi A, Safarpour H, Tlili I (2020) On the dynamics of a curved Microtubule-associated proteins by considering viscoelastic properties of the living biological cells. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1747549

    Article  Google Scholar 

  122. 122.

    Marzbanrad J, Hoseinpour A (2017) Structural optimization of MacPherson control arm under fatigue loading. Tehnički vjesnik 24:917–924

    Google Scholar 

  123. 123.

    Safarpour M, Rahimi AR, Alibeigloo A (2019) Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1646137

    Article  Google Scholar 

  124. 124.

    Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A (2019) Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2019.1666723

    Article  Google Scholar 

  125. 125.

    Bisheh H, Alibeigloo A, Safarpour M, Rahimi A (2019) Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method. Int J Appl Mech 11:1950073

    Google Scholar 

  126. 126.

    Safarpour M, Rahimi A, Alibeigloo A, Bisheh H, Forooghi A (2019) Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mech Based Design Struct Mach 1–31

  127. 127.

    A Rahimi, A Alibeigloo, M Safarpour (2020) Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell. J Vib Control. doi:10.1177/1077546320902340

  128. 128.

    Wang Y, Zeng R, Safarpour M (2020) Vibration analysis of FG-GPLRC annular plate in a thermal environment. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1719508

    Article  Google Scholar 

  129. 129.

    Shahgholian D, Safarpour M, Rahimi AR, Alibeigloo A (2020) Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh–Ritz method. Acta Mech. https://doi.org/10.1007/s00707-020-02616-8

    MathSciNet  Article  MATH  Google Scholar 

  130. 130.

    Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) Stability and dynamics of viscoelastic moving Rayleigh beams with an asymmetrical distribution of material parameters. Symmetry 12:586

    Google Scholar 

  131. 131.

    Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13:1707

    Google Scholar 

  132. 132.

    Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, won Jung D, Safa M (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Design Struct Mach. https://doi.org/10.1080/15397734.2020.1748052

    Article  Google Scholar 

  133. 133.

    Ghabussi A, Marnani JA, Rohanimanesh MS (2020) Improving seismic performance of portal frame structures with steel curved dampers. Structures 24:27–40. https://doi.org/10.1016/j.istruc.2019.12.025

    Article  Google Scholar 

  134. 134.

    Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34:235–238

    MathSciNet  MATH  Google Scholar 

  135. 135.

    Bellman R, Kashef B, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52

    MathSciNet  MATH  Google Scholar 

  136. 136.

    Eyvazian A, Hamouda AM, Tarlochan F, Mohsenizadeh S, Dastjerdi AA (2019) Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core. Steel Compos Struct 33:891

    Google Scholar 

  137. 137.

    Motezaker M, Eyvazian A (2020) Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs. Steel Compos Struct 34:289

    Google Scholar 

  138. 138.

    Shu C (2012) Differential quadrature and its application in engineering. Springer, Berlin

    Google Scholar 

  139. 139.

    Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int J Numer Methods Fluids 15:791–798

    MATH  Google Scholar 

  140. 140.

    Derazkola HA, Eyvazian A, Simchi A (2020) Modeling and experimental validation of material flow during FSW of polycarbonate. Mater Today Commun 22:100796

    Google Scholar 

  141. 141.

    Eyvazian A, Hamouda A, Tarlochan F, Derazkola HA, Khodabakhshi F (2020) Simulation and experimental study of underwater dissimilar friction-stir welding between aluminium and steel. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.02.003

    Article  Google Scholar 

  142. 142.

    Gasser L (1987) Free vibrations of thin cylindrical shells containing liquid. MS Thesis

  143. 143.

    Gonçalves PB, Ramos NR (1997) Numerical method for vibration analysis of cylindrical shells. J Eng Mech 123:544–550

    Google Scholar 

  144. 144.

    Dym CL (1973) Some new results for the vibrations of circular cylinders. J Sound Vib 29:189–205

    MATH  Google Scholar 

  145. 145.

    Shen H-S, Xiang Y (2012) Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput Methods Appl Mech Eng 213:196–205

    MathSciNet  MATH  Google Scholar 

  146. 146.

    Kurachi M, Hoshi M, Tashiro H (1995) Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil Cytoskelet 30:221–228

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Abdelouahed Tounsi or Maryam Safa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shariati, A., Habibi, M., Tounsi, A. et al. Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. Engineering with Computers 37, 3629–3648 (2021). https://doi.org/10.1007/s00366-020-01024-9

Download citation

Keywords

  • Modified couple stress theory
  • MAP tau protein
  • Cantilevered curved microtubule
  • GDQM
  • Viscoelastic properties