Skip to main content
Log in

The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this research, electrically characteristics of a graphene nanoplatelet (GPL)-reinforced composite (GPLRC) microdisk are explored using generalized differential quadrature method. Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin–Tsai micromechanics is used to acquire the elasticity of the structure, whereas the variation of thermal expansion, Poisson’s ratio, and density through the thickness direction is determined by the rule of mixtures. Hamilton’s principle is implemented to establish governing equations and associated boundary conditions of the GPLRC microdisk joint with PIAC. The compatibility conditions are satisfied by taking perfect bonding between the core and PIAC into consideration. Maxwell’s equation is employed to capture the piezoelectricity effects. The numerical results revealed the important role of ratios of length scale and nonlocal to thickness, outer-to-inner ratio of radius (\(R_{\text{o}} /R_{\text{i}}\)), ratio of piezoelectric to core thickness (hp/h), and GPL weight fraction (\(g_{\text{GPL}}\)) on the critical voltage of the system. Another important consequence is that by increasing \(R_{\text{o}} /R_{\text{i}}\), the critical voltage of the smart structure increases more intensely in comparison with the \(g_{\text{GPL}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin Walled Struct 150:106683

    Google Scholar 

  2. Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. https://doi.org/10.1007/s00366-020-00949-5

    Article  Google Scholar 

  3. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L (2020) Buckling and frequency responses of a graphene nanoplatelet reinforced composite microdisk. Int J Appl Mech. https://doi.org/10.1142/S1758825119501023

    Article  Google Scholar 

  4. Safarpour M, Rahimi A, Alibeigloo A (2019) Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1646137

    Article  Google Scholar 

  5. Shahgholian-Ghahfarokhi D, Safarpour M, Rahimi A (2019) Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1666723

    Article  Google Scholar 

  6. Bisheh H, Alibeigloo A, Safarpour M, Rahimi A (2019) Three-dimensional static and free vibrational analysis of graphene reinforced composite circular/annular plate using differential quadrature method. Int J Appl Mech 11:1950073

    Google Scholar 

  7. Safarpour M, Rahimi A, Alibeigloo A, Bisheh H, Forooghi A (2019) Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1701491

    Article  Google Scholar 

  8. Rahimi A, Alibeigloo A, Safarpour M (2020) Three-dimensional static and free vibration analysis of graphene platelet–reinforced porous composite cylindrical shell. J Vib Control. https://doi.org/10.1177/1077546320902340

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang Y, Zeng R, Safarpour M (2020) Vibration analysis of FG-GPLRC annular plate in a thermal environment. Mech Based Des Struct Mach 1–19

  10. Shahgholian D, Safarpour M, Rahimi A, Alibeigloo A (2020) Buckling analyses of functionally graded graphene-reinforced porous cylindrical shell using the Rayleigh–Ritz method. Acta Mech 1–16

  11. Qiao W, Yang Z, Kang Z, Pan Z (2020) Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm. Eng Appl Artif Intell 87:103323

    Google Scholar 

  12. Qiao W, Yang Z (2019) Forecast the electricity price of US using a wavelet transform-based hybrid model. Energy 163:116704. https://doi.org/10.1016/j.energy.2019.116704

    Article  Google Scholar 

  13. Qiao W, Yang Z (2019) Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm. IEEE Access 7:138972–138989

    Google Scholar 

  14. Qiao W, Tian W, Tian Y, Yang Q, Wang Y, Zhang J (2019) The forecasting of PM2. 5 using a hybrid model based on wavelet transform and an improved deep learning algorithm. IEEE Access 7:142814–142825

    Google Scholar 

  15. Qiao W, Yang Z (2019) Modified dolphin swarm algorithm based on chaotic maps for solving high-dimensional function optimization problems. IEEE Access 7:110472–110486

    Google Scholar 

  16. Qiao W, Huang K, Azimi M, Han S (2019) A novel hybrid prediction model for hourly gas consumption in supply side based on improved machine learning algorithms. IEEE Access 7:88218–88230. https://doi.org/10.1109/ACCESS.2019.2918156

    Google Scholar 

  17. Derazkola HA, Eyvazian A, Simchi A (2020) Modeling and experimental validation of material flow during FSW of polycarbonate. Mater Today Commun 22:100796

    Google Scholar 

  18. Eyvazian A, Hamouda A, Tarlochan F, Derazkola HA, Khodabakhshi F (2020) Simulation and experimental study of underwater dissimilar friction-stir welding between aluminium and steel. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.02.003

  19. Eyvazian A, Hamouda AM, Aghajani Derazkola H, Elyasi M (2020) Study on the effects of tool tile angle, offset and plunge depth on friction stir welding of poly (methyl methacrylate) T-joint. Proc Inst Mech Eng Part B J Eng Manuf 234:773–787

    Google Scholar 

  20. Derazkola HA, Eyvazian A, Simchi A (2020) Submerged friction stir welding of dissimilar joints between an Al–Mg alloy and low carbon steel: thermo-mechanical modeling, microstructural features, and mechanical properties. J Manuf Process 50:68–79

    Google Scholar 

  21. Nadri S, Xie L, Jafari M, Alijabbari N, Cyberey ME, Barker NS et al (2018) A 160 GHz frequency quadrupler based on heterogeneous integration of GaAs Schottky diodes onto silicon using SU-8 for epitaxy transfer. In: 2018 IEEE/MTT-S international microwave symposium-IMS, 2018, pp 769–772

  22. Jafari M, Moradi G, Shirazi RS, Mirzavand R (2017) Design and implementation of a six-port junction based on substrate integrated waveguide. Turk J Electr Eng Comput Sci 25:2547–2553

    Google Scholar 

  23. Alkhatib SE, Tarlochan F, Eyvazian A (2017) Collapse behavior of thin-walled corrugated tapered tubes. Eng Struct 150:674–692

    Google Scholar 

  24. Hedayati R, Ziaei-Rad S, Eyvazian A, Hamouda AM (2014) Bird strike analysis on a typical helicopter windshield with different lay-ups. J Mech Sci Technol 28:1381–1392

    Google Scholar 

  25. Mozafari H, Eyvazian A, Hamouda AM, Crupi V, Epasto G, Gugliemino E (2018) Numerical and experimental investigation of corrugated tubes under lateral compression. Int J Crashworthiness 23:461–473

    Google Scholar 

  26. Eyvazian A, Akbarzadeh I, Shakeri M (2012) Experimental study of corrugated tubes under lateral loading. Proc Inst Mech Eng Part L J Mater Des Appl 226:109–118

    Google Scholar 

  27. Eyvazian A, Habibi MK, Hamouda AM, Hedayati R (2014) Axial crushing behavior and energy absorption efficiency of corrugated tubes. Mater Des 1980–2015(54):1028–1038

    Google Scholar 

  28. Eyvazian A, Tran T, Hamouda AM (2018) Experimental and theoretical studies on axially crushed corrugated metal tubes. Int J Non Linear Mech 101:86–94

    Google Scholar 

  29. Dastjerdi AA, Shahsavari H, Eyvazian A, Tarlochan F (2019) Crushing analysis and multi-objective optimization of different length bi-thin walled cylindrical structures under axial impact loading. Eng Optim 51:1884–1901

    Google Scholar 

  30. Sadighi A, Eyvazian A, Asgari M, Hamouda AM (2019) A novel axially half corrugated thin-walled tube for energy absorption under axial loading. Thin Walled Struct 145:106418

    Google Scholar 

  31. Eyvazian A, Taghizadeh SA, Hamouda AM, Tarlochan F, Moeinifard M, Gobbi M (2019) Buckling and crushing behavior of foam-core hybrid composite sandwich columns under quasi-static edgewise compression. J Sandw Struct Mater. https://doi.org/10.1177/1099636219894665

    Article  Google Scholar 

  32. Sun J, Zhao J (2018) Multi-layer graphene reinforced nano-laminated WC-Co composites. Mater Sci Eng A 723:1–7

    Google Scholar 

  33. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Google Scholar 

  34. Zhong R, Wang Q, Tang J, Shuai C, Qin B (2018) Vibration analysis of functionally graded carbon nanotube reinforced composites (FG-CNTRC) circular, annular and sector plates. Compos Struct 194:49–67

    Google Scholar 

  35. Yang Y, Wang Z, Wang Y (2018) Thermoelastic coupling vibration and stability analysis of rotating circular plate in friction clutch. J Low Freq Noise Vib Active Control 38:558–573. https://doi.org/10.1177/1461348418817465

    Google Scholar 

  36. Ghabussi A, Ashrafi N, Shavalipour A, Hosseinpour A, Habibi M, Moayedi H et al (2019) Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1705166

    Article  Google Scholar 

  37. Habibi M, Mohammadi A, Safarpour H, Ghadiri M (2019) Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1701490

    Article  Google Scholar 

  38. Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1697932

    Article  Google Scholar 

  39. Ebrahimi F, Mohammadi K, Barouti MM, Habibi M (2019) Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media. https://doi.org/10.1080/17455030.2019.1694729

    Article  Google Scholar 

  40. Shokrgozar A, Safarpour H, Habibi M (2019) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng Part C J Mech Eng Sci 234(2):512–529. https://doi.org/10.1177/0954406219883312

    Google Scholar 

  41. Habibi M, Taghdir A, Safarpour H (2019) Stability analysis of an electrically cylindrical nanoshell reinforced with graphene nanoplatelets. Compos B Eng 175:107125

    Google Scholar 

  42. Mohammadgholiha M, Shokrgozar A, Habibi M, Safarpour H (2019) Buckling and frequency analysis of the nonlocal strain–stress gradient shell reinforced with graphene nanoplatelets. J Vib Control 25:2627–2640

    MathSciNet  Google Scholar 

  43. Ebrahimi F, Habibi M, Safarpour H (2019) On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput 35:1375–1389

    Google Scholar 

  44. Safarpour H, Hajilak ZE, Habibi M (2019) A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. Int J Mech Mater Des 15:569–583

    Google Scholar 

  45. Hashemi HR, Alizadeh AA, Oyarhossein MA, Shavalipour A, Makkiabadi M, Habibi M (2019) Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure. Waves Random Complex Media. https://doi.org/10.1080/17455030.2019.1662968

    Article  Google Scholar 

  46. Ebrahimi F, Hashemabadi D, Habibi M, Safarpour H (2019) Thermal buckling and forced vibration characteristics of a porous GNP reinforced nanocomposite cylindrical shell. Microsyst Technol 26:1–13. https://doi.org/10.1007/s00542-019-04542-9

    Article  Google Scholar 

  47. Mohammadi A, Lashini H, Habibi M, Safarpour H (2019) Influence of viscoelastic foundation on dynamic behaviour of the double walled cylindrical inhomogeneous micro shell using MCST and with the aid of GDQM. J Solid Mech 11:440–453

    Google Scholar 

  48. Habibi M, Hashemabadi D, Safarpour H (2019) Vibration analysis of a high-speed rotating GPLRC nanostructure coupled with a piezoelectric actuator. Eur Phys J Plus 134:307

    Google Scholar 

  49. Pourjabari A, Hajilak ZE, Mohammadi A, Habibi M, Safarpour H (2019) Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures. Comput Math Appl 77:2608–2626

    MathSciNet  MATH  Google Scholar 

  50. Habibi M, Mohammadgholiha M, Safarpour H (2019) Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J Braz Soc Mech Sci Eng 41:221

    Google Scholar 

  51. Safarpour H, Pourghader J, Habibi M (2019) Influence of spring-mass systems on frequency behavior and critical voltage of a high-speed rotating cantilever cylindrical three-dimensional shell coupled with piezoelectric actuator. J Vib Control 25:1543–1557

    MathSciNet  Google Scholar 

  52. Ebrahimi F, Hajilak ZE, Habibi M, Safarpour H (2019) Buckling and vibration characteristics of a carbon nanotube-reinforced spinning cantilever cylindrical 3D shell conveying viscous fluid flow and carrying spring-mass systems under various temperature distributions. Proc Inst Mech Eng Part C J Mech Eng Sci 233:4590–4605

    Google Scholar 

  53. Esmailpoor Hajilak Z, Pourghader J, Hashemabadi D, Sharifi Bagh F, Habibi M, Safarpour H (2019) Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Des Struct Mach 45:521–545

    Google Scholar 

  54. Safarpour H, Ghanizadeh SA, Habibi M (2018) Wave propagation characteristics of a cylindrical laminated composite nanoshell in thermal environment based on the nonlocal strain gradient theory. Eur Phys J Plus 133:532

    Google Scholar 

  55. Gao W, Dimitrov D, Abdo H (2018) Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete Contin Dyn Syst S 12:711–721

    MathSciNet  MATH  Google Scholar 

  56. Gao W, Guirao JLG, Basavanagoud B, Wu J (2018) Partial multi-dividing ontology learning algorithm. Inf Sci 467:35–58

    MathSciNet  MATH  Google Scholar 

  57. Gao W, Wang W, Dimitrov D, Wang Y (2018) Nano properties analysis via fourth multiplicative ABC indicator calculating. Arab J Chem 11:793–801

    Google Scholar 

  58. Gao W, Wu H, Siddiqui MK, Baig AQ (2018) Study of biological networks using graph theory. Saudi J Biol Sci 25:1212–1219

    Google Scholar 

  59. Gao W, Guirao JLG, Abdel-Aty M, Xi W (2019) An independent set degree condition for fractional critical deleted graphs. Discrete Contin Dyn Syst S 12:877–886

    MathSciNet  MATH  Google Scholar 

  60. Medani M, Benahmed A, Zidour M, Heireche H, Tounsi A, Bousahla AA et al (2019) Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel Compos Struct 32:595–610

    Google Scholar 

  61. Karami B, Shahsavari D, Janghorban M, Tounsi A (2019) Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Int J Mech Sci 156:94–105

    Google Scholar 

  62. Draoui A, Zidour M, Tounsi A, Adim B (2019) Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). J Nano Res 57:117–135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117

    Article  Google Scholar 

  63. Bakhadda B, Bouiadjra MB, Bourada F, Bousahla AA, Tounsi A, Mahmoud S (2018) Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation. Wind Struct 27:311–324

    Google Scholar 

  64. Eyvazian A, Hamouda AM, Tarlochan F, Mohsenizadeh S, Dastjerdi AA (2019) Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform graphene platelet with magnetorheological fluid core. Steel Compos Struct 33:891

    Google Scholar 

  65. Motezaker M, Eyvazian A (2020) Post-buckling analysis of Mindlin cut out-plate reinforced by FG-CNTs. Steel Compos Struct 34:289

    Google Scholar 

  66. Alipour M (2018) Transient forced vibration response analysis of heterogeneous sandwich circular plates under viscoelastic boundary support. Arch Civ Mech Eng 18:12–31

    Google Scholar 

  67. Ebrahimi F, Rastgo A (2008) An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory. Thin Walled Struct 46:1402–1408

    Google Scholar 

  68. Ebrahimi F, Rastgoo A (2008) Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers. Smart Mater Struct 17:015044

    Google Scholar 

  69. Zhou S, Zhang R, Zhou S, Li A (2019) Free vibration analysis of bilayered circular micro-plate including surface effects. Appl Math Model 70:54–66

    MathSciNet  MATH  Google Scholar 

  70. Mohammadimehr M, Emdadi M, Afshari H, Rousta Navi B (2018) Bending, buckling and vibration analyses of MSGT microcomposite circular-annular sandwich plate under hydro-thermo-magneto-mechanical loadings using DQM. Int J Smart Nano Mater 9:233–260

    Google Scholar 

  71. Mohammadimehr M, Atifeh SJ, Rousta Navi B (2018) Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings. J Vib Control 24:3471–3486

    MathSciNet  Google Scholar 

  72. Sajadi B, Alijani F, Goosen H, van Keulen F (2018) Effect of pressure on nonlinear dynamics and instability of electrically actuated circular micro-plates. Nonlinear Dyn 91:2157–2170

    Google Scholar 

  73. Wang Z-W, Han Q-F, Nash DH, Liu P-Q (2017) Investigation on inconsistency of theoretical solution of thermal buckling critical temperature rise for cylindrical shell. Thin Walled Struct 119:438–446

    Google Scholar 

  74. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1719509

    Article  Google Scholar 

  75. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Eur Phys J Plus 135:144

    Google Scholar 

  76. Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadi Arani O, Habibi M, Safarpour H et al (2019) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech. https://doi.org/10.1142/S1758825120500106

    Article  Google Scholar 

  77. Esmailpoor Hajilak Z, Pourghader J, Hashemabadi D, Sharifi Bagh F, Habibi M, Safarpour H (2019) Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mech Based Des Struct Mach 47:521–545

    Google Scholar 

  78. Karami B, Janghorban M, Tounsi A (2019) Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput 35:1297–1316

    Google Scholar 

  79. Alimirzaei S, Mohammadimehr M, Tounsi A (2019) Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct Eng Mech 71:485–502

    Google Scholar 

  80. Karami B, Janghorban M, Tounsi A (2019) Wave propagation of functionally graded anisotropic nanoplates resting on Winkler–Pasternak foundation. Struct Eng Mech 70:55–66

    Google Scholar 

  81. Karami B, Janghorban M, Tounsi A (2019) On exact wave propagation analysis of triclinic material using three-dimensional bi-Helmholtz gradient plate model. Struct Eng Mech 69:487–497

    Google Scholar 

  82. Karami B, Janghorban M, Shahsavari D, Tounsi A (2018) A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates. Steel Compos Struct 28:99–110

    Google Scholar 

  83. Karami B, Janghorban M, Tounsi A (2018) Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel Compos Struct 27:201–216

    Google Scholar 

  84. Karami B, Janghorban M, Tounsi A (2018) Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin Walled Struct 129:251–264

    Google Scholar 

  85. Karami B, Janghorban M, Tounsi A (2017) Effects of triaxial magnetic field on the anisotropic nanoplates. Steel Compos Struct 25:361–374

    Google Scholar 

  86. Wang K, Wang B, Zhang C (2017) Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory. Acta Mech 228:129–140

    MathSciNet  MATH  Google Scholar 

  87. Mahinzare M, Alipour MJ, Sadatsakkak SA, Ghadiri M (2019) A nonlocal strain gradient theory for dynamic modeling of a rotary thermo piezo electrically actuated nano FG circular plate. Mech Syst Signal Process 115:323–337

    Google Scholar 

  88. Mahinzare M, Ranjbarpur H, Ghadiri M (2018) Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate. Mech Syst Signal Process 100:188–207

    Google Scholar 

  89. Berghouti H, Adda Bedia E, Benkhedda A, Tounsi A (2019) Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Adv Nano Res 7:351–364

    Google Scholar 

  90. Boutaleb S, Benrahou KH, Bakora A, Algarni A, Bousahla AA, Tounsi A et al (2019) Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res 7:191

    Google Scholar 

  91. Hamza-Cherif R, Meradjah M, Zidour M, Tounsi A, Belmahi S, Bensattalah T (2018) Vibration analysis of nano beam using differential transform method including thermal effect. J Nano Res 54:1–14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1

    Article  Google Scholar 

  92. Youcef DO, Kaci A, Benzair A, Bousahla AA, Tounsi A (2018) Dynamic analysis of nanoscale beams including surface stress effects. Smart Struct Syst 21:65–74

    Google Scholar 

  93. Bouadi A, Bousahla AA, Houari MSA, Heireche H, Tounsi A (2018) A new nonlocal HSDT for analysis of stability of single layer graphene sheet. Adv Nano Res 6:147

    Google Scholar 

  94. Bellifa H, Benrahou KH, Bousahla AA, Tounsi A, Mahmoud S (2017) A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct Eng Mech 62:695–702

    Google Scholar 

  95. Bounouara F, Benrahou KH, Belkorissat I, Tounsi A (2016) A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos Struct 20:227–249

    Google Scholar 

  96. Al-Basyouni K, Tounsi A, Mahmoud S (2015) Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position. Compos Struct 125:621–630

    Google Scholar 

  97. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Google Scholar 

  98. De Villoria RG, Miravete A (2007) Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater 55:3025–3031

    Google Scholar 

  99. Liu W, Zhang Z, Chen J, Jiang D, Fei W, Fan J, Li Y (2020) Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: a case study in Jiangsu province. Energy 9:117348. https://doi.org/10.1016/j.energy.2020.117348

    Article  Google Scholar 

  100. Bouhadra A, Tounsi A, Bousahla AA, Benyoucef S, Mahmoud S (2018) Improved HSDT accounting for effect of thickness stretching in advanced composite plates. Struct Eng Mech 66:61–73

    Google Scholar 

  101. Zarga D, Tounsi A, Bousahla AA, Bourada F, Mahmoud S (2019) Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel Compos Struct 32:389–410

    Google Scholar 

  102. Boukhlif Z, Bouremana M, Bourada F, Bousahla AA, Bourada M, Tounsi A et al (2019) A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation. Steel Compos Struct 31:503–516

    Google Scholar 

  103. Boulefrakh L, Hebali H, Chikh A, Bousahla AA, Tounsi A, Mahmoud S (2019) The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng 18:161–178

    Google Scholar 

  104. Mahmoudi A, Benyoucef S, Tounsi A, Benachour A, Adda Bedia EA, Mahmoud S (2019) A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations. J Sandw Struct Mater 21:1906–1929

    Google Scholar 

  105. Zaoui FZ, Ouinas D, Tounsi A (2019) New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos B Eng 159:231–247

    Google Scholar 

  106. Younsi A, Tounsi A, Zaoui FZ, Bousahla AA, Mahmoud S (2018) Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates. Geomech Eng 14:519–532

    Google Scholar 

  107. Benchohra M, Driz H, Bakora A, Tounsi A, Adda Bedia E, Mahmoud S (2018) A new quasi-3D sinusoidal shear deformation theory for functionally graded plates. Struct Eng Mech 65:19–31

    Google Scholar 

  108. Abualnour M, Houari MSA, Tounsi A, Mahmoud S (2018) A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates. Compos Struct 184:688–697

    Google Scholar 

  109. Atmane HA, Tounsi A, Bernard F (2017) Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int J Mech Mater Des 13:71–84

    Google Scholar 

  110. Draiche K, Tounsi A, Mahmoud S (2016) A refined theory with stretching effect for the flexure analysis of laminated composite plates. Geomech Eng 11:671–690

    Google Scholar 

  111. Bousahla AA, Houari MSA, Tounsi A, Adda Bedia EA (2014) A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int J Comput Methods 11:1350082

    MathSciNet  MATH  Google Scholar 

  112. Chaabane LA, Bourada F, Sekkal M, Zerouati S, Zaoui FZ, Tounsi A et al (2019) Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Struct Eng Mech 71:185–196

    Google Scholar 

  113. Bourada F, Bousahla AA, Bourada M, Azzaz A, Zinata A, Tounsi A (2019) Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory. Wind Struct 28:19–30

    Google Scholar 

  114. Liu W, Zhang X, Fan J, Li Y, Wang L (2020) Evaluation of potential for salt cavern gas storage and integration of brine extraction: cavern utilization, Yangtze River Delta region. Nat Resour Res. https://doi.org/10.1007/s11053-020-09640-4

    Article  Google Scholar 

  115. Meksi R, Benyoucef S, Mahmoudi A, Tounsi A, Adda Bedia EA, Mahmoud S (2019) An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. J Sandw Struct Mater 21:727–757

    Google Scholar 

  116. Bourada F, Amara K, Bousahla AA, Tounsi A, Mahmoud S (2018) A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates. Struct Eng Mech 68:661–675

    Google Scholar 

  117. Zine A, Tounsi A, Draiche K, Sekkal M, Mahmoud S (2018) A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells. Steel Compos Struct 26:125–137

    Google Scholar 

  118. Fourn H, Atmane HA, Bourada M, Bousahla AA, Tounsi A, Mahmoud S (2018) A novel four variable refined plate theory for wave propagation in functionally graded material plates. Steel Compos Struct 27:109–122

    Google Scholar 

  119. Attia A, Bousahla AA, Tounsi A, Mahmoud S, Alwabli AS (2018) A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations. Struct Eng Mech 65:453–464

    Google Scholar 

  120. Chikh A, Tounsi A, Hebali H, Mahmoud S (2017) Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT. Smart Struct Syst 19:289–297

    Google Scholar 

  121. Menasria A, Bouhadra A, Tounsi A, Bousahla AA, Mahmoud S (2017) A new and simple HSDT for thermal stability analysis of FG sandwich plates. Steel Compos Struct 25:157–175

    Google Scholar 

  122. El-Haina F, Bakora A, Bousahla AA, Tounsi A, Mahmoud S (2017) A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. Struct Eng Mech 63:585–595

    Google Scholar 

  123. Abdelaziz HH, Meziane MAA, Bousahla AA, Tounsi A, Mahmoud S, Alwabli AS (2017) An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos Struct 25:693–704

    Google Scholar 

  124. Bellifa H, Bakora A, Tounsi A, Bousahla AA, Mahmoud S (2017) An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates. Steel Compos Struct 25:257–270

    Google Scholar 

  125. Fahsi A, Tounsi A, Hebali H, Chikh A, Adda Bedia E, Mahmoud S (2017) A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates. Geomech Eng 13:385–410

    Google Scholar 

  126. Bousahla AA, Benyoucef S, Tounsi A, Mahmoud S (2016) On thermal stability of plates with functionally graded coefficient of thermal expansion. Struct Eng Mech 60:313–335

    Google Scholar 

  127. Boukhari A, Atmane HA, Tounsi A, Adda Bedia E, Mahmoud S (2016) An efficient shear deformation theory for wave propagation of functionally graded material plates. Struct Eng Mech 57:837–859

    Google Scholar 

  128. Beldjelili Y, Tounsi A, Mahmoud S (2016) Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory. Smart Struct Syst 18:755–786

    Google Scholar 

  129. Attia A, Tounsi A, Bedia E, Mahmoud S (2015) Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories. Steel Compos Struct 18:187–212

    Google Scholar 

  130. Wang Q (2002) On buckling of column structures with a pair of piezoelectric layers. Eng Struct 24:199–205

    Google Scholar 

  131. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    MATH  Google Scholar 

  132. Shu C (2012) Differential quadrature and its application in engineering. Springer, Berlin

    Google Scholar 

  133. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin Walled Struct 149:106669

    Google Scholar 

  134. Ghazanfari A, Soleimani SS, Keshavarzzadeh M, Habibi M, Assempuor A, Hashemi R (2019) Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1662310

    Article  Google Scholar 

  135. Alipour M, Torabi MA, Sareban M, Lashini H, Sadeghi E, Fazaeli A et al (2019) Finite element and experimental method for analyzing the effects of martensite morphologies on the formability of DP steels. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1633343

    Article  Google Scholar 

  136. Hosseini S, Habibi M, Assempour A (2018) Experimental and numerical determination of forming limit diagram of steel–copper two-layer sheet considering the interface between the layers. Modares Mech Eng 18:174–181

    Google Scholar 

  137. Habibi M, Hashemi R, Ghazanfari A, Naghdabadi R, Assempour A (2018) Forming limit diagrams by including the M–K model in finite element simulation considering the effect of bending. Proc Inst Mech Eng Part L J Mater Des Appl 232:625–636

    Google Scholar 

  138. Habibi M, Payganeh G (2018) Experimental and finite element investigation of titanium tubes hot gas forming and production of square cross-section specimens. Aerosp Mech J 14:89–99

    Google Scholar 

  139. Habibi M, Hashemi R, Tafti MF, Assempour A (2018) Experimental investigation of mechanical properties, formability and forming limit diagrams for tailor-welded blanks produced by friction stir welding. J Manuf Process 31:310–323

    Google Scholar 

  140. Habibi M, Ghazanfari A, Assempour A, Naghdabadi R, Hashemi R (2017) Determination of forming limit diagram using two modified finite element models. Mech Eng 48:141–144

    Google Scholar 

  141. Ghazanfari A, Assempour A, Habibi M, Hashemi R (2016) Investigation on the effective range of the through thickness shear stress on forming limit diagram using a modified Marciniak–Kuczynski model. Modares Mech Eng 16:137–143

    Google Scholar 

  142. Habibi M, Hashemi R, Sadeghi E, Fazaeli A, Ghazanfari A, Lashini H (2016) Enhancing the mechanical properties and formability of low carbon steel with dual-phase microstructures. J Mater Eng Perform 25:382–389

    Google Scholar 

  143. Fazaeli A, Habibi M, Ekrami A (2016) Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite–pearlite steel with the same chemical composition. Metall Eng 19(2):84–93

    Google Scholar 

  144. Shamloofard M, Assempour A (2019) Development of an inverse isogeometric methodology and its application in sheet metal forming process. Appl Math Model 73:266–284

    MATH  Google Scholar 

  145. Shamloofard M, Movahhedy MR (2015) Development of thermo-elastic tapered and spherical superelements. Appl Math Comput 265:380–399

    MathSciNet  MATH  Google Scholar 

  146. Han J-B, Liew K (1999) Axisymmetric free vibration of thick annular plates. Int J Mech Sci 41:1089–1109

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzad Ebrahimi or Eris Elianddy Bin Supeni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The governing equations of the structure are presented as follows:

$$\begin{aligned} & \delta u^{i}_{0} :\\ & \quad (1 - l^{2} \nabla^{2} )\left[ {\begin{array}{*{20}l} {\frac{\partial }{\partial R}\left( {\begin{array}{*{20}l} {\left[ {A^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + B^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - D^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + \left[ {A^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + B^{i}_{12} \frac{{u_{1} }}{R} - D^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{31} \phi } \hfill \\ \end{array} } \right)} \hfill \\ {\quad - \frac{1}{R}\left( {\begin{array}{*{20}l} {\left[ {A^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + B^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - D^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + Q^{i}_{22} \left[ {A^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + B^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - D^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right]} \hfill \\ \end{array} } \right)} \hfill \\ \end{array} } \right] = 0;\quad i = c,p \\ \end{aligned}$$
(P-1)
$$\begin{aligned} & \delta w^{i}_{0} :\\ & \quad (1 - l^{2} \nabla^{2} )\left[ {\begin{array}{*{20}l} {c_{1} \frac{{\partial^{2} }}{{\partial R^{i2} }}\left( {\begin{array}{*{20}l} {\left[ {D^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + \left[ {D^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{12} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{33} \phi } \hfill \\ \end{array} } \right)} \hfill \\ {\quad - c_{1} \frac{\partial }{{R^{i} \partial R^{i} }}\left( {\begin{array}{*{20}l} {\left[ {D^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + Q^{i}_{22} \left[ {D^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right]} \hfill \\ \end{array} } \right)} \hfill \\ {\quad + \frac{\partial }{{\partial R^{i} }}\left( {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{11} \partial \phi /\partial R} \right)} \hfill \\ {\quad - 3c_{1} \frac{\partial }{{\partial R^{i} }}\left( {(C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{12} \partial \phi /\partial R^{i} } \right) - N_{1}^{p} w^{i}_{{0,x^{2} }} } \hfill \\ \end{array} } \right] = 0;\quad i = c,p \\ \end{aligned}$$
(P-2)
$$\begin{aligned} & \delta u^{i}_{1} :\\ & \quad (1 - l^{2} \nabla^{2} )\left[ {\begin{array}{*{20}l} {\frac{\partial }{{\partial R^{i} }}\left( {\begin{array}{*{20}l} {\left[ {B^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + C^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - E^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + \left[ {B^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + C^{i}_{12} \frac{{u^{i}_{1} }}{{R^{i} }} - E^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{32} \phi } \hfill \\ \end{array} } \right)} \hfill \\ {\quad - \frac{{c_{1} \partial }}{{\partial R^{i} }}\left( {\begin{array}{*{20}l} {\left[ {D^{i}_{11} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{11} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{11} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + \left[ {D^{i}_{12} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{12} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right] - X_{33} \phi } \hfill \\ \end{array} } \right)} \hfill \\ {\quad - \frac{1}{{R^{i} }}\left( {\begin{array}{*{20}l} {\left[ {B^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + C^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - E^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + Q^{i}_{22} \left[ {B^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + C^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - E^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right]} \hfill \\ \end{array} } \right)} \hfill \\ {\quad + \frac{{c_{1} }}{{R^{i} }}\left( {\begin{array}{*{20}l} {\left[ {D^{i}_{12} \frac{{\partial u^{i}_{0} }}{{\partial R^{i} }} + E^{i}_{12} \frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} - G^{i}_{12} c_{1} \left( {\frac{{\partial u^{i}_{1} }}{{\partial R^{i} }} + \frac{{\partial^{2} w^{i}_{0} }}{{\partial R^{i2} }}} \right)} \right]} \hfill \\ {\quad + Q^{i}_{22} \left[ {D^{i}_{22} \frac{{u^{i}_{0} }}{{R^{i} }} + E^{i}_{22} \frac{{u^{i}_{1} }}{{R^{i} }} - G^{i}_{22} c_{1} \left( {\frac{{u^{i}_{1} }}{{R^{i} }} + \frac{{\partial w^{i}_{0} }}{{R^{i} \partial R^{i} }}} \right)} \right]} \hfill \\ \end{array} } \right)} \hfill \\ {\quad - \left[ {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{11} \partial \phi /\partial R^{i} } \right]} \hfill \\ {\quad + 3c_{1} \left( {S^{i}_{Rz} = (C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {u^{i}_{1} + \frac{{\partial w^{i}_{0} }}{{\partial R^{i} }}} \right) + X_{12} \partial \phi /\partial R^{i} } \right)} \hfill \\ \end{array} } \right] = 0;\quad i = c,p \\ \end{aligned}$$
(P-3)
$$\begin{aligned} & \delta \phi :\\ & \quad (1 - l^{2} \nabla^{2} )\left( {\begin{array}{*{20}l} { + X_{31} \frac{{\partial u^{p}_{0} }}{{\partial R^{p} }} + (X_{11} - 3X_{12} )\frac{{\partial^{2} w^{p}_{0} }}{{\partial R^{p2} }} - X_{33} \frac{{\partial^{2} w^{p}_{0} }}{{\partial R^{p2} }}} \hfill \\ {\quad - ( - X_{11} + 3X_{12} )\frac{{\partial u^{p}_{1} }}{{\partial R^{p} }} + X_{32} \frac{{\partial u^{p}_{1} }}{{\partial R^{p} }} - X_{33} \frac{{\partial u^{p}_{1} }}{{\partial R^{p} }}} \hfill \\ {\quad - X_{41} \frac{{\partial^{2} \phi }}{{\partial R^{p2} }} + X_{42} \phi } \hfill \\ \end{array} } \right) = 0 \\ \end{aligned}$$
(P-4)

The GDQ form can be given as follows:

$$\begin{aligned} & \delta u^{i}_{0} :\\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } + \hfill \\ \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ {\begin{array}{*{20}l} {\left( {\begin{array}{*{20}l} {\left[ {\begin{array}{*{20}l} {A^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{0} + B^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} } \hfill \\ {\quad - D^{i}_{11} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{i}_{0} } \right)} \hfill \\ \end{array} } \right]} \hfill \\ {\quad + \left[ {\begin{array}{*{20}l} { + B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + A^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }}} \hfill \\ {\quad - D^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right] - X_{31} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi_{n} } \hfill \\ \end{array} } \right)} \hfill \\ {\quad - \frac{1}{R}\left( {\begin{array}{*{20}l} {\left[ {\begin{array}{*{20}l} {A^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }}} \hfill \\ {\quad - D^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right]} \hfill \\ {\quad + Q^{i}_{22} \left[ {\begin{array}{*{20}l} {A^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{0} }}{{R^{2i} {}_{n}}}} + B^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}}} } \hfill \\ {\quad - D^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}}} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{w^{i}_{0} }}{{R^{2i} {}_{n}}}} \right)} \hfill \\ \end{array} } \right]} \hfill \\ \end{array} } \right)} \hfill \\ \end{array} } \right] = 0;\quad i = c,p \\ \end{aligned}$$
(P-5)
$$\begin{aligned} & \delta w^{i}_{0} :\\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } + \hfill \\ \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R_{{}}^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ {\begin{array}{*{20}l} {c_{1} \left( {\begin{array}{*{20}l} {\left[ {\begin{array}{*{20}l} {D^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } u^{i}_{0} + E^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } u^{i}_{1} } \hfill \\ {\quad - G^{i}_{11} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(4)}_{n,v} } w^{i}_{0} } \right)} \hfill \\ \end{array} } \right]} \hfill \\ {\quad + \left[ {\begin{array}{*{20}l} {D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }}} \hfill \\ {\quad - G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right] - X_{33} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi } \hfill \\ \end{array} } \right)} \hfill \\ {\quad - c_{1} \left( {\begin{array}{*{20}l} {\left[ {\begin{array}{*{20}l} {D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }}} \hfill \\ {\quad - G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right]} \hfill \\ {\quad + Q^{i}_{22} \left[ {\begin{array}{*{20}l} {D^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R^{2i} {}_{n}}} + E^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}}} \hfill \\ {\quad - G^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R^{2i} {}_{n}}}} \right)} \hfill \\ \end{array} } \right]} \hfill \\ \end{array} } \right)} \hfill \\ {\quad + \left( {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{i}_{0} } \right) + X_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi } \right)} \hfill \\ {\quad - 3c_{1} \left( {\begin{array}{*{20}l} {(C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{i}_{1} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } w^{i}_{0} } \right)} \hfill \\ {\quad + X_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi } \hfill \\ \end{array} } \right) - N_{1}^{p} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{i}_{0} } \hfill \\ \end{array} } \right] = 0;\quad i = c,p \\ \end{aligned}$$
(P-6)
$$\begin{aligned} & \delta u^{i}_{1} :\\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } + \hfill \\ \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R_{{}}^{i} }} \hfill \\ \end{aligned} \right)} \right)\left[ {\begin{array}{*{20}l} {\left( \begin{aligned} \left[ {B^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{0} + C^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} - E^{i}_{11} c_{1} \left( {\begin{array}{*{20}l} {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} } \hfill \\ {\quad + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } w^{i}_{0} } \hfill \\ \end{array} } \right)} \right] \hfill \\ \quad + \left[ {\begin{array}{*{20}l} {B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + C^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} - } \hfill \\ {E^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right] - X_{32} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi \hfill \\ \end{aligned} \right)} \hfill \\ {\quad - c_{1} \left( {\begin{array}{*{20}l} {\left[ {D^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{0} + E^{i}_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} - G^{i}_{11} c_{1} \left( {\begin{array}{*{20}l} {\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } u^{i}_{1} } \hfill \\ {\quad + \sum\limits_{v = 1}^{{N_{n} }} {C^{(3)}_{n,v} } w^{i}_{0} } \hfill \\ \end{array} } \right)} \right]} \hfill \\ {\quad + \left[ {\begin{array}{*{20}l} {D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }}} \hfill \\ {\quad - G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right] - X_{33} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi } \hfill \\ \end{array} } \right)} \hfill \\ {\quad - \left( {\begin{array}{*{20}l} {\left[ {\begin{array}{*{20}l} {B^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + C^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }}} \hfill \\ {\quad - E^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{0} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right]} \hfill \\ {\quad \; + Q^{i}_{22} \left[ {B^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{0} }}{{R^{2i} {}_{n}}}} + C^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}}} - E^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}}} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{w^{i}_{0} }}{{R^{2i} {}_{n}}}} \right)} \right]} \hfill \\ \end{array} } \right)} \hfill \\ {\quad + c_{1} \left( {\begin{array}{*{20}l} {\left[ {\begin{array}{*{20}l} {D^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{0} }}{{R_{n}^{i} }} + E^{i}_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }}} \hfill \\ {\quad - G^{i}_{12} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{{u^{i}_{1} }}{{R_{n}^{i} }} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \frac{{w^{i}_{1} }}{{R_{n}^{i} }}} \right)} \hfill \\ \end{array} } \right]} \hfill \\ {\quad \; + Q^{i}_{22} \left[ {D^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{0} }}{{R^{2i} {}_{n}}}} + E^{i}_{22} \sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}}} - G^{i}_{22} c_{1} \left( {\sum\limits_{v = 1}^{{N_{n} }} {\frac{{u^{i}_{1} }}{{R^{2i} {}_{n}}}} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} \frac{{w^{i}_{0} }}{{R^{2i} {}_{n}}}} } \right)} \right]} \hfill \\ \end{array} } \right)} \hfill \\ {\quad - \left[ {(A^{i}_{55} - 3C^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {u^{i}_{0} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} w^{i}_{0} } } \right) + X_{11} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi } \right]} \hfill \\ {\quad + 3c_{1} \left( {(C^{i}_{55} - 3E^{i}_{55} c_{1} )\left( {\sum\limits_{v = 1}^{{N_{n} }} {u^{i}_{1} } I_{v} + \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} w^{i}_{0} } } \right) + X_{12} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \phi } \right)} \hfill \\ \end{array} } \right] = 0;\quad i = c,p \\ \end{aligned}$$
(P-7)
$$\begin{aligned} & \delta \phi :\\ & \quad \left( {1 - l^{2} \left( \begin{aligned} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } + \hfill \\ \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } \frac{1}{{R_{{}}^{i} }} \hfill \\ \end{aligned} \right)} \right)\left( {\begin{array}{*{20}l} { + X_{31} \sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{p}_{0} + (X_{11} - 3X_{12} - X_{33} )\sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } w^{p}_{0} } \hfill \\ {\quad - ( - X_{11} + 3X_{12} - X_{32} + X_{33} )\sum\limits_{v = 1}^{{N_{n} }} {C^{(1)}_{n,v} } u^{p}_{1} } \hfill \\ {\quad - X_{41} \sum\limits_{v = 1}^{{N_{n} }} {C^{(2)}_{n,v} } \phi + X_{42} \sum\limits_{v = 1}^{{N_{n} }} \phi I_{v} } \hfill \\ \end{array} } \right) = 0 \\ \end{aligned}$$
(P-8)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsaddini Lori, E., Ebrahimi, F., Elianddy Bin Supeni, E. et al. The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Engineering with Computers 37, 3489–3508 (2021). https://doi.org/10.1007/s00366-020-01004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01004-z

Keywords

Navigation