Skip to main content
Log in

ARTMe: a new array-based algorithm for Adaptive Refinement of Triangle Meshes

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript


This work presents a new efficient array-based algorithm for adaptive mesh refinement capable of interactively generating millions of triangles. The new refinement algorithm satisfies important topological mesh properties, e.g., vertex valence control and a good mesh gradation. Furthermore, all local topological modifications of the triangle mesh are based on Stellar operators implemented on top of the Corner-Table topological data structure. This paper also shows that the proposed implementation provides a good balance in the trade-off between memory and processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others


  1. Aleardi L, Devillers O, Rossignac J (2012) Esq: Editable squad representation for triangle meshes. In: 25th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), 2012, pp. 110–117.

  2. Amresh A, Farin G, Razdan A (2003) Adaptive subdivision schemes for triangular meshes. In: Farin G, Hamann B, Hagen H (eds) Hierarchical and geometrical methods in scientific visualization, mathematics and visualization. Springer, Berlin, pp 319–327

    Chapter  Google Scholar 

  3. Bank RE, Sherman AH, Weiser A (1983) Some refinement algorithms and data structures for regular local mesh refinement. Sci Comput Appl Math Comput Phys Sci 1:3–17

    Google Scholar 

  4. Baumgart BG (1975) A polyhedron representation for computer vision. AFIPS Natl Comput Conf 44:589–596

    Google Scholar 

  5. Botsch M, Steinberg S, Bischoff S, Kobbelt L (2002) OpenMesh: a generic and efficient polygon mesh data structure. In: OpenSG Symposium 2002

  6. Cashman TJ (2012) Beyond catmull clark? a survey of advances in subdivision surface methods. Comput Graph Forum 31(1):42–61.

    Article  Google Scholar 

  7. Catmull E, Clark J (1978) Recursively generated b-spline surfaces on arbitrary topological meshes. Comput Aided Design 10(6):350–355.

    Article  Google Scholar 

  8. Caumon G, Collon-Drouaillet P, De Veslud CLC, Viseur S, Sausse J (2009) Surface-based 3d modeling of geological structures. Math Geosci 41(8):927–945

    Article  MATH  Google Scholar 

  9. Doo D, Sabin M (1978) Behaviour of recursive division surfaces near extraordinary points. Comput Aided Design 10(6):356–360.

    Article  Google Scholar 

  10. Dyn N, Levine D, Gregory JA (1990) A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans Graph 9(2):160–169.

    Article  MATH  Google Scholar 

  11. Gurung T, Laney D, Lindstrom P, Rossignac J (2011) Squad: compact representation for triangle meshes. Comput Graph Forum 30(2):355–364.

    Article  Google Scholar 

  12. Gurung T, Luffel M, Lindstrom P, Rossignac J (2011) Lr: compact connectivity representation for triangle meshes. ACM Trans Graph 30(4):67:1–67:8.

    Article  Google Scholar 

  13. Gurung T, Luffel M, Lindstrom P, Rossignac J (2013) Zipper: a compact connectivity data structure for triangle meshes. Comput Aided Design 45(2):262–269. (Solid and Physical Modeling 2012)

    Article  Google Scholar 

  14. Hantschel T, Kauerauf AI (2009) Fundamentals of basin and petroleum systems modeling. Springer, Berlin, Heidelberg.

    Google Scholar 

  15. Hatipoglu B, Ozturan C (2015) Parallel triangular mesh refinement by longest edge bisection. SIAM J Sci Comput 37(5):C574–C588

    Article  MathSciNet  MATH  Google Scholar 

  16. Hjelle Ö, Dæhlen M (2006) Triangulations Appl (Math Vis). Springer, New York

    Google Scholar 

  17. Kähler K, Haber J, Seidel HP (2001) Geometry-based muscle modeling for facial animation. Graph Interface 2001:37–46

    Google Scholar 

  18. Kobbelt L (2000) \(\sqrt{3}\)-subdivision. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques, SIGGRAPH ’00, pp. 103–112. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

  19. Lewiner T, Lopes H, Medeiros E, Tavares G, Velho L (2010) Topological mesh operators. Comput Aided Geom Design 27(1):1–22.

  20. Loop CT (1987) Smooth subdivision surfaces based on triangles. Department of Mathematics, University of Utah

  21. Lopes H, Oliveira JB, de Figueiredo LH (2002) Robust adaptive polygonal approximation of implicit curves. Comput Graph 26(6):841–852.

    Article  Google Scholar 

  22. Mallet JLL (2002) Geomodelling. Applied Geostatistics. Oxford University Press Inc, Oxford

    Google Scholar 

  23. Mantyla M (1988) Introduction to solid modeling. W. H. Freeman & Co., New York

    Google Scholar 

  24. Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (ISBN 0898716691, 9780898716696)

  25. Newman MHA (1926) On the foundations of combinatorial analysis situs. In: Proceedings of the royal academy, pp. 610–641

  26. Pachner U (1991) P.l. homeomorphic manifolds are equivalent by elementary shellingst. Eur J Comb 12(2):129–145.

    Article  MATH  Google Scholar 

  27. Pakdel HR, Samavati FF (2007) Incremental subdivision for triangle meshes. Int J Comput Sci Eng 3(1):80–92.

    Google Scholar 

  28. Poincaré H (1893) Sur la géneralisation d’un théoréme d’Euler relatif aux poliédres 117(117):437–464

    Google Scholar 

  29. Rossignac J (2001) 3d compression made simple: Edgebreaker with zip&wrap on a corner-table. In: Proceedings of the international conference on shape modeling and applications, SMI ’01, pp. 278. IEEE computer society, Washington, DC, USA.

  30. Tanenbaum AS, Austin T (2005) Structured computer organization, 5th edn. Prentice-Hall, Inc., Upper Saddle River (ISBN 0131485210)

    Google Scholar 

  31. Velho L, Zorin D (2001) 48 subdivision. Comput Aided Geom Design 18(5):397–427. (Subdivision Algorithms)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vieira AW, Lewiner T, Velho L, Lopes H, Tavares G (2004) Stellar mesh simplification using probabilistic optimization. Comput Graph Forum 23(4):825–838.

  33. Zorin D, Schröder P, Sweldens W (1996) Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, SIGGRAPH ’96, pp. 189–192. ACM, New York, NY, USA.

  34. Zorin D, Schröder P, Sweldens W (1997) Interactive multiresolution mesh editing. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, SIGGRAPH ’97, pp. 259–268. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Download references


The authors would like to thank CNPQ for partially supporting this research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hélio Lopes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coêlho, J., Gattass, M. & Lopes, H. ARTMe: a new array-based algorithm for Adaptive Refinement of Triangle Meshes. Engineering with Computers 35, 1–20 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: