Engineering with Computers

, Volume 35, Issue 1, pp 1–20 | Cite as

ARTMe: a new array-based algorithm for Adaptive Refinement of Triangle Meshes

  • Jéferson Coêlho
  • Marcelo Gattass
  • Hélio LopesEmail author
Original Article


This work presents a new efficient array-based algorithm for adaptive mesh refinement capable of interactively generating millions of triangles. The new refinement algorithm satisfies important topological mesh properties, e.g., vertex valence control and a good mesh gradation. Furthermore, all local topological modifications of the triangle mesh are based on Stellar operators implemented on top of the Corner-Table topological data structure. This paper also shows that the proposed implementation provides a good balance in the trade-off between memory and processing time.


Mesh models Topological data structures Topological operators Adaptive refinement Triangulations Stellar mesh operators Algorithms 



The authors would like to thank CNPQ for partially supporting this research.

Supplementary material (27 kb)
Supplementary material 1 (ZIP 28 KB)


  1. 1.
    Aleardi L, Devillers O, Rossignac J (2012) Esq: Editable squad representation for triangle meshes. In: 25th SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), 2012, pp. 110–117.
  2. 2.
    Amresh A, Farin G, Razdan A (2003) Adaptive subdivision schemes for triangular meshes. In: Farin G, Hamann B, Hagen H (eds) Hierarchical and geometrical methods in scientific visualization, mathematics and visualization. Springer, Berlin, pp 319–327CrossRefGoogle Scholar
  3. 3.
    Bank RE, Sherman AH, Weiser A (1983) Some refinement algorithms and data structures for regular local mesh refinement. Sci Comput Appl Math Comput Phys Sci 1:3–17Google Scholar
  4. 4.
    Baumgart BG (1975) A polyhedron representation for computer vision. AFIPS Natl Comput Conf 44:589–596Google Scholar
  5. 5.
    Botsch M, Steinberg S, Bischoff S, Kobbelt L (2002) OpenMesh: a generic and efficient polygon mesh data structure. In: OpenSG Symposium 2002Google Scholar
  6. 6.
    Cashman TJ (2012) Beyond catmull clark? a survey of advances in subdivision surface methods. Comput Graph Forum 31(1):42–61. CrossRefGoogle Scholar
  7. 7.
    Catmull E, Clark J (1978) Recursively generated b-spline surfaces on arbitrary topological meshes. Comput Aided Design 10(6):350–355. CrossRefGoogle Scholar
  8. 8.
    Caumon G, Collon-Drouaillet P, De Veslud CLC, Viseur S, Sausse J (2009) Surface-based 3d modeling of geological structures. Math Geosci 41(8):927–945CrossRefzbMATHGoogle Scholar
  9. 9.
    Doo D, Sabin M (1978) Behaviour of recursive division surfaces near extraordinary points. Comput Aided Design 10(6):356–360. CrossRefGoogle Scholar
  10. 10.
    Dyn N, Levine D, Gregory JA (1990) A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans Graph 9(2):160–169. CrossRefzbMATHGoogle Scholar
  11. 11.
    Gurung T, Laney D, Lindstrom P, Rossignac J (2011) Squad: compact representation for triangle meshes. Comput Graph Forum 30(2):355–364. CrossRefGoogle Scholar
  12. 12.
    Gurung T, Luffel M, Lindstrom P, Rossignac J (2011) Lr: compact connectivity representation for triangle meshes. ACM Trans Graph 30(4):67:1–67:8. CrossRefGoogle Scholar
  13. 13.
    Gurung T, Luffel M, Lindstrom P, Rossignac J (2013) Zipper: a compact connectivity data structure for triangle meshes. Comput Aided Design 45(2):262–269. (Solid and Physical Modeling 2012)CrossRefGoogle Scholar
  14. 14.
    Hantschel T, Kauerauf AI (2009) Fundamentals of basin and petroleum systems modeling. Springer, Berlin, Heidelberg. Google Scholar
  15. 15.
    Hatipoglu B, Ozturan C (2015) Parallel triangular mesh refinement by longest edge bisection. SIAM J Sci Comput 37(5):C574–C588MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hjelle Ö, Dæhlen M (2006) Triangulations Appl (Math Vis). Springer, New YorkGoogle Scholar
  17. 17.
    Kähler K, Haber J, Seidel HP (2001) Geometry-based muscle modeling for facial animation. Graph Interface 2001:37–46Google Scholar
  18. 18.
    Kobbelt L (2000) \(\sqrt{3}\)-subdivision. In: Proceedings of the 27th annual conference on computer graphics and interactive techniques, SIGGRAPH ’00, pp. 103–112. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.
  19. 19.
    Lewiner T, Lopes H, Medeiros E, Tavares G, Velho L (2010) Topological mesh operators. Comput Aided Geom Design 27(1):1–22.
  20. 20.
    Loop CT (1987) Smooth subdivision surfaces based on triangles. Department of Mathematics, University of UtahGoogle Scholar
  21. 21.
    Lopes H, Oliveira JB, de Figueiredo LH (2002) Robust adaptive polygonal approximation of implicit curves. Comput Graph 26(6):841–852. CrossRefGoogle Scholar
  22. 22.
    Mallet JLL (2002) Geomodelling. Applied Geostatistics. Oxford University Press Inc, OxfordGoogle Scholar
  23. 23.
    Mantyla M (1988) Introduction to solid modeling. W. H. Freeman & Co., New YorkGoogle Scholar
  24. 24.
    Moore RE, Kearfott RB, Cloud MJ (2009) Introduction to interval analysis. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (ISBN 0898716691, 9780898716696)Google Scholar
  25. 25.
    Newman MHA (1926) On the foundations of combinatorial analysis situs. In: Proceedings of the royal academy, pp. 610–641Google Scholar
  26. 26.
    Pachner U (1991) P.l. homeomorphic manifolds are equivalent by elementary shellingst. Eur J Comb 12(2):129–145. CrossRefzbMATHGoogle Scholar
  27. 27.
    Pakdel HR, Samavati FF (2007) Incremental subdivision for triangle meshes. Int J Comput Sci Eng 3(1):80–92. Google Scholar
  28. 28.
    Poincaré H (1893) Sur la géneralisation d’un théoréme d’Euler relatif aux poliédres 117(117):437–464Google Scholar
  29. 29.
    Rossignac J (2001) 3d compression made simple: Edgebreaker with zip&wrap on a corner-table. In: Proceedings of the international conference on shape modeling and applications, SMI ’01, pp. 278. IEEE computer society, Washington, DC, USA.
  30. 30.
    Tanenbaum AS, Austin T (2005) Structured computer organization, 5th edn. Prentice-Hall, Inc., Upper Saddle River (ISBN 0131485210)Google Scholar
  31. 31.
    Velho L, Zorin D (2001) 48 subdivision. Comput Aided Geom Design 18(5):397–427. (Subdivision Algorithms)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vieira AW, Lewiner T, Velho L, Lopes H, Tavares G (2004) Stellar mesh simplification using probabilistic optimization. Comput Graph Forum 23(4):825–838.
  33. 33.
    Zorin D, Schröder P, Sweldens W (1996) Interpolating subdivision for meshes with arbitrary topology. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques, SIGGRAPH ’96, pp. 189–192. ACM, New York, NY, USA.
  34. 34.
    Zorin D, Schröder P, Sweldens W (1997) Interactive multiresolution mesh editing. In: Proceedings of the 24th annual conference on computer graphics and interactive techniques, SIGGRAPH ’97, pp. 259–268. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations