Skip to main content
Log in

Crossing weighted uncertainty scenarios assisted distribution-free metamodel-based robust simulation optimization

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In practice, computer simulations cannot be perfectly controlled because of the inherent uncertainty caused by variability in the environment (e.g., demand rate in the inventory management). Ignoring this source of variability may result in sub-optimality or infeasibility of optimal solutions. This paper aims at proposing a new method for simulation–optimization when limited knowledge on the probability distribution of uncertain variables is available and also limited budget for computation is allowed. The proposed method uses the Taguchi robust terminology and the crossed array design when its statistical techniques are replaced by design and analysis of computer experiments and Kriging. This method offers a new approach for weighting uncertainty scenarios for such a case when probability distributions of uncertain variables are unknown without available historical data. We apply a particular bootstrapping technique when the number of simulation runs is much less compared to the common bootstrapping techniques. In this case, bootstrapping is undertaken by employing original (i.e., non-bootstrapped) data, and thus, it does not result in a computationally expensive task. The applicability of the proposed method is illustrated through the Economic Order Quantity (EOQ) inventory problem, according to uncertainty in the demand rate and holding cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Viana FAC, Simpson TW, Balabanov V, Toropov V (2014) Metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J 52(4):670–690

    Article  Google Scholar 

  2. Kleijnen JPC (2015) Design and analysis of simulation experiments, 2nd edn. Springer, Cham. https://doi.org/10.1007/978-3-319-18087-8

    Book  MATH  Google Scholar 

  3. Dellino G, Meloni C (2015) Uncertainty management in simulation—optimization of complex systems. Springer, Boston, MA, USA. https://doi.org/10.1007/978-1-4899-7547-8

    Book  MATH  Google Scholar 

  4. Cao L, Jiang P, Chen Z, Zhou Q, Zhou H (2015) Metamodel assisted robust optimization under interval uncertainly based on reverse model. IFAC PapersOnLine 48(28):1178–1183

    Article  Google Scholar 

  5. Ben-Tal LE, Ghaoui, Nemirovski A (2009) Robust optimization. Princeton University Press, New Jersey

    Book  MATH  Google Scholar 

  6. Figueira G, Almada-Lobo B (2014) Hybrid simulation optimization methods a taxonomy and discussion. Simul Model Pract Theory 46:118–134

    Article  Google Scholar 

  7. Kleijnen JPC, Mehdad E (2017) Estimating the variance of the predictor in stochastic Kriging. Simul Model Pract Theory 66 (2016):166–173

    Google Scholar 

  8. Amaran S, Sahinidis NV, Sharda B, Bury SJ (2016) Simulation optimization: a review of algorithms and applications. Ann Oper Res 240(1):351–380

    Article  MathSciNet  MATH  Google Scholar 

  9. Kleijnen JPC (1993) Simulation and optimization in production planning. Decis Support Syst 9(3):269–280

    Article  Google Scholar 

  10. Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  11. Kleijnen JPC, Gaury E (2003) Short-term robustness of production management systems: a case study. Eur J Oper Res 148(2):452–465

    Article  MathSciNet  MATH  Google Scholar 

  12. Park S, Antony J (2008) Robust design for quality engineering and six sigma. World Scientific Publishing Company, New Jersey

    Book  MATH  Google Scholar 

  13. Phadke MS (1989) Quality engineering using robust design, Prentice Hall PTR, NJ, USA

    Google Scholar 

  14. Bertsimas D, Brown DB, Caramanis C (2011) Theory and applications of robust optimization. SIAM Rev 53(3):464–501

    Article  MathSciNet  MATH  Google Scholar 

  15. Simpson TW, Poplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2):129–150

    Article  MATH  Google Scholar 

  16. Kleijnen JPC (2017) Regression and Kriging metamodels with their experimental designs in simulation—a review. Eur J Oper Res 256(1):1–6

    Article  MathSciNet  MATH  Google Scholar 

  17. Barton RR (1992) Metamodels for simulation input-output relations. In: Proc. 24th Conf. Winter Simul.—WSC’92, no. January, pp. 289–299

  18. Bates RA, Kenett RS, Steinberg DM, Wynn HP (2006) Robust design using computer experiments. Prog Ind Math ECMI 8:564–568

    MATH  Google Scholar 

  19. Lee KH, Park GJ (2006) A gobal robust optimization using kriging based approximation model. JSME Int J 49 (3):779–788

    Article  Google Scholar 

  20. Viana FAC (2016) A tutorial on Latin hypercube design of experiments. Qual Reliab Eng Int 32(5):1975–1985

    Article  Google Scholar 

  21. Krige DG (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrand. J S Afr Inst Min Metall 52(6):119–139

    Google Scholar 

  22. Jalali H, Van Nieuwenhuyse I (2015) Simulation optimization in inventory replenishment: A classification. IIE Trans 47(11):1217–1235

    Article  Google Scholar 

  23. Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196(33):3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  24. Lehman JS, Santner TJ, Notz WI (2004) Designing computer experiments to determine robust control variables. Stat Sin 14(1):571–590

    MathSciNet  MATH  Google Scholar 

  25. Miettinen KM (1998) Nonlinear multiobjective optimization. Springer Science and Business Media, New York. https://doi.org/10.1007/978-1-4615-5563-6

    Book  MATH  Google Scholar 

  26. Van Beers WCM, Kleijnen JPC (2004) Kriging interpolation in simulation: a survey. In: Proc. 2004 Winter Simul. Conf. vol. 1, pp. 107–115

  27. Yu, Zeng B (2015) Exploring the modeling capacity of two-stage robust optimization: variants of robust unit commitment model. IEEE Trans Power Syst 30(1):109–122

    Article  MathSciNet  Google Scholar 

  28. Myers R, Montgomery DC, Anderson-Cook CM (2016) Response surface methodology: process and product optimization using designed experiments, 4th edn. Wiley, New York, ISBN: 1118916026, 9781118916025

    MATH  Google Scholar 

  29. Moghaddam S, Mahlooji H (2016) Robust simulation optimization using $φ$-divergence. Int J Ind Eng Comput 7(4):517–534

    Google Scholar 

  30. Yanikoglu DD, Hertog, Kleijnen JPC (2016) Robust dual response optimization. IIE Trans 48(3):298–312

    Article  Google Scholar 

  31. Kleijnen PC, Mehdad E, Van Beers WCM (2012) Convex and monotonic bootstrapped Kriging. In: Proc.—Winter Simul. Conf., no. August

  32. Dellino G, Kleijnen JPC, Meloni C (2012) Robust optimization in simulation: Taguchi and Krige combined. INFORMS J Comput 24(3):471–484

    Article  MathSciNet  MATH  Google Scholar 

  33. Cheng RC (2006) Resampling methods. Handbooks Oper Res Manag Sci 13:415–453

    Article  Google Scholar 

  34. Kleijnen PC, van Beers WCM (2013) Monotonicity-preserving bootstrapped Kriging metamodels for expensive simulations. J Oper Res Soc 64(5):708–717

    Article  Google Scholar 

  35. Kumar SA, Suresh N (2009) Operations management. New Age International, New Delhi

    Google Scholar 

  36. Zipkin PH (2000) Foundations of inventory management. McGraw-Hill, New York

    MATH  Google Scholar 

  37. Parnianifard A, Azfanizam A, Ariffin M, Ismail M, Ebrahim N (2019) Recent developments in metamodel based robust black-box simulation optimization: an overview. Decis Sci Lett 8(1):17–44

    Article  Google Scholar 

  38. Hillier FS (2012) Introduction to operations research. Tata McGraw-Hill Education, New York

    MATH  Google Scholar 

  39. Kleijnen JPC, Mehdad E (2014) Multivariate versus univariate Kriging metamodels for multi-response simulation models. Eur J Oper Res 236(2):573–582

    Article  MathSciNet  MATH  Google Scholar 

  40. Kleijnen JPC (2005) An Overview of the design and analysis of simulation experiments for sensitivity analysis. Eur J Oper Res 164(2):287–300

    Article  MathSciNet  MATH  Google Scholar 

  41. Li YF, Ng SH, Xie M, Goh TN (2010) A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Appl Soft Comput 10(4):1257–1273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Parnianifard.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parnianifard, A., Azfanizam, A.S., Ariffin, M.K.A. et al. Crossing weighted uncertainty scenarios assisted distribution-free metamodel-based robust simulation optimization. Engineering with Computers 36, 139–150 (2020). https://doi.org/10.1007/s00366-018-00690-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-00690-0

Keywords

Navigation