Skip to main content
Log in

Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this study, multi-objective optimization is applied to implement performance-based design of steel moment-resisting frame (SMRF) structures. In order to efficiently achieve this purpose, a chaotic multi-objective firefly algorithm (CMOFA) is proposed to find the Pareto optimal front for the multi-objective performance-based optimum design (MO-PBOD) problem of SMRFs. The structural weight and the maximum inter-story drift at performance levels are taken as the conflicting objective functions of the MO-PBOD problem which should be optimized simultaneously subject to serviceability and ultimate limit-state constraints. In order to illustrate the efficiency of the proposed CMOFA meta-heuristic, two benchmark truss examples and three MO-PBOD examples of SMRFs are presented. The numerical results demonstrate the better computational performance of the proposed CMOFA meta-heuristic in comparison with some existing multi-objective algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. FEMA-356 (2000) Prestandard and commentary for the seismic rehabilitation of buildings. Federal Emergency Management Agency, Washington

  2. Gholizadeh S (2015) Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network. Adv Eng Softw 81:50–65

    Article  Google Scholar 

  3. Gholizadeh S (2013) Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization. Comput Struct 125:86–99

    Article  Google Scholar 

  4. Gandomi AH, Talatahari S, Yang XS, Deb S (2012) Design optimization of truss structures using cuckoo search algorithm. Struct Des Tall Spec Build 22:1330–1349

    Article  Google Scholar 

  5. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. SAGA 2009, Lecture Notes in Computer Science, 5792. Springer, Berlin, pp 169–178

    Chapter  Google Scholar 

  6. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  7. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279

    Article  Google Scholar 

  8. Kaveh A, Laknejadi K (2013) A new multi-swarm multi-objective optimization method for structural design. Adv Eng Softw 58:54–69

    Article  MATH  Google Scholar 

  9. Yang XS, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46:1222–1237

    Article  MathSciNet  Google Scholar 

  10. Gholizadeh S, Milani A (2016) Optimal performance-based design of steel frames using advanced metaheuristics. Asian J Civ Eng 17:607–623

    Google Scholar 

  11. Papadrakakis M, Lagaros ND, Plevris V (2002) Multi-objective optimization of skeletal structures under static and seismic loading conditions. Eng Optim 34:645–669

    Article  MATH  Google Scholar 

  12. Liu M, Burns SA, Wen YK (2005) Multiobjective optimization for performance-based seismic design of steel moment frame structures. Earthq Eng Struct Dyn 34:289–306

    Article  Google Scholar 

  13. Fragiadakis M, Lagaros ND, Papadrakakis M (2006) Performance-based multiobjective optimum design of steel structures considering life-cycle cost. Struct Multidisc Optim 32:1–11

    Article  Google Scholar 

  14. Saadat S, Camp CV, Pezeshk S (2014) Seismic performance-based design optimization considering direct economic loss and direct social loss. Eng Struct 76:193–201

    Article  Google Scholar 

  15. Pecora L, Carroll T (1990) Synchronization in chaotic system. Phys Rev Lett 4:821–824

    Article  MathSciNet  MATH  Google Scholar 

  16. Gandomi AH, Yang XS (2014) Chaotic bat algorithm. J Comput Sci 5:224–232

    Article  MathSciNet  Google Scholar 

  17. Talatahari S, Sheikholeslami R, Farahmand Azar B, Gandomi AH (2012) Imperialist competitive algorithm combined with chaos for global optimization. Commun Nonlinear Sci Numer Simul 17:1312–1319

    Article  MathSciNet  MATH  Google Scholar 

  18. Gandomi AH, Yun GJ, Yang XS, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18:327–340

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 274:17–34

    Article  MathSciNet  Google Scholar 

  20. Wang GG, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016) Chaotic cuckoo search. Soft Comput 20:3349–3362

    Article  Google Scholar 

  21. Gholizadeh S, Poorhoseini H (2016) Seismic layout optimization of steel braced frames by an improved dolphin echolocation algorithm. Struct Multidisc Optim 54:1011–1029.

    Article  Google Scholar 

  22. FEMA P-58-1 (2012) Seismic performance assessment of buildings. Federal Emergency Management Agency, Washington

  23. Mazzoni S, Mckenna F, Fenves GL (2006) OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, Berkeley

    Google Scholar 

  24. LRFD-AISC (2001) Manual of steel construction. Load and resistance factor design. American Institute of Steel Construction, Chicago

    Google Scholar 

  25. Hasancebi O, Bahcecioglu T, Kurc O, Saka MP (2011) Optimum design of high-rise steel buildings using an evolution strategy integrated parallel algorithm. Comput Struct 89:2037–2051

    Article  Google Scholar 

  26. Gholizadeh S, Fattahi F (2014) Design optimization of tall steel buildings by a modified particle swarm algorithm. Struct Des Tall Spec Build 23:285–301

    Article  Google Scholar 

  27. Coello CAC, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publishers, New York

    Book  MATH  Google Scholar 

  28. Yang XS (2013) Multiobjective firefly algorithm for continuous optimization. Eng Comput 29:175–184

    Article  Google Scholar 

  29. Lin JH, Chou CW, Yang CH, Tsai HL (2012) A chaotic Levy flight bat algorithm for parameter estimation in nonlinear dynamic biological systems. J Comput Inf Tech 2:56–63

    Google Scholar 

  30. Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) Firefly algorithm with chaos. Commun Nonlinear Sci Numer Simul 18:89–98

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen G, Liu L, Song P, Du Y (2014) Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems. Energy Convers Manag 86:548–560

    Article  Google Scholar 

  32. Pana I, Das S (2015) Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization. Appl Soft Comput 29:328–344

    Article  Google Scholar 

  33. He D, He C, Jiang L, Zhu H, Hu G (2001) Chaotic characteristic of a one-dimensional iterative map with infinite collapses. IEEE Circuits Syst 48: 900–906

    Article  MathSciNet  MATH  Google Scholar 

  34. Li Y, Deng S, Xiao D (2011) A novel Hash algorithm construction based on chaotic neural network. Neural Comput Appl 20:133–141

    Article  Google Scholar 

  35. Ott E (2002) Chaos in dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  36. Zitzler E, Deb K, Thiele L (2000) Comparison of multi-objective evolutionary algorithms: empirical results. Evol Comput 8:173–195

    Article  Google Scholar 

  37. HAZUS-MH MR1 (2003) Multi-hazard Loss estimation methodology earthquake model. FEMA-National Institute of Building Sciences, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Gholizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, S., Baghchevan, A. Multi-objective seismic design optimization of steel frames by a chaotic meta-heuristic algorithm. Engineering with Computers 33, 1045–1060 (2017). https://doi.org/10.1007/s00366-017-0515-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-017-0515-0

Keywords

Navigation