Skip to main content
Log in

More accurate results for two-dimensional heat equation with Neumann’s and non-classical boundary conditions

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, recently proposed spectral meshless radial point interpolation (SMRPI) method is applied to the two-dimensional diffusion equation with a mixed group of Dirichlet’s and Neumann’s and non-classical boundary conditions. The present method is based on meshless methods and benefits from spectral collocation ideas. The point interpolation method with the help of radial basis functions is proposed to construct shape functions which have Kronecker delta function property. Evaluation of high-order derivatives is possible by constructing and using operational matrices. The computational cost of the method is modest due to using strong form equation and collocation approach. A comparison study of the efficiency and accuracy of the present method and other meshless methods is given by applying on mentioned diffusion equation. Stability and convergence of this meshless approach are discussed and theoretically proven. Convergence studies in the numerical examples show that SMRPI method possesses excellent rates of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Berlin

    Google Scholar 

  2. Atluri S (2004) The meshless method (MLPG) for domain and BIE discretizations. Tech. Science Press, CA, USA

    MATH  Google Scholar 

  3. Atluri S, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method. Tech. Science Press, CA, USA

    MATH  Google Scholar 

  4. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  5. Belytschko T, Lu YY, Gu L (1995) Element free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570

    Article  MATH  Google Scholar 

  6. Duan Y, Tan Y (2006) A meshless Galerkin method for Dirichlet problems using radial basis functions. J Comput Appl Math 196(2):394–401

    Article  MathSciNet  MATH  Google Scholar 

  7. Assari P, Adibi H, Dehghan M (2014) A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels. J Comput Appl Math 267:160–181

    Article  MathSciNet  MATH  Google Scholar 

  8. Dehghan M, Salehi R (2014) A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations. J Comput Appl Math 268:93–110

    Article  MathSciNet  MATH  Google Scholar 

  9. Mirzaei D, Dehghan M (2010) Meshless local Petrov-Galerkin (MLPG) approximation to the two dimensional sine-Gordon equation. J Comput Appl Math 233(10):2737–2754

    Article  MathSciNet  MATH  Google Scholar 

  10. Fili A, Naji A, Duan Y (2010) Coupling three-field formulation and meshless mixed Galerkin methods using radial basis functions. J Comput Appl Math 234(8):2456–2468

    Article  MathSciNet  MATH  Google Scholar 

  11. Peng M, Li D, Cheng Y (2011) The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems. Eng Struct 33(1):127–135

    Article  Google Scholar 

  12. Dai B, Cheng Y (2010) An improved local boundary integral equation method for two-dimensional potential problems. Int J Appl Mech 2(2):421–436

    Article  Google Scholar 

  13. Bai F, Li D, Wang J, Cheng Y (2012) An improved complex variable element-free Galerkin method for two-dimensional elasticity problems. Chin Phys B 21(2):020204-1–-020204-10

    Article  Google Scholar 

  14. Atluri S, Shen S (2002) The meshless local Petrov-Galerkin (MLPG) method: a simple and less costly alternative to the finite element and boundary element methods. Comput Model Eng Sci 3:11–51

    MathSciNet  MATH  Google Scholar 

  15. Kansa E (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics. I. surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Shokri A (2008) A numerical method for solution of the two dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79:700–715

    Article  MathSciNet  MATH  Google Scholar 

  17. Jakobsson S, Andersson B, Edelvik F (2009) Rational radial basis function interpolation with applications to antenna design. J Comput Appl Math 233(4):889–904

    Article  MathSciNet  MATH  Google Scholar 

  18. Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239:72–92

    Article  MathSciNet  MATH  Google Scholar 

  19. Pan R, Skala V (2011) A two-level approach to implicit surface modeling with compactly supported radial basis functions. Eng Comput 27(3):299–307

    Article  Google Scholar 

  20. Abbasbandy S, Ghehsareh HR, Hashim I (2013) A mesh-free method for the solution of two-dimensional cubic nonlinear Schrödinger equation. Eng Anal Bound Elem 37(6):885–898

    Article  MathSciNet  MATH  Google Scholar 

  21. Abbasbandy S, Ghehsareh HR, Hashim I (2012) Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function. Eng Anal Bound Elem 36(12):1811–1818

    Article  MathSciNet  Google Scholar 

  22. Kosec G, Šarler B (2013) Solution of a low Prandtl number natural convection benchmark by a local meshless method. Int J Numer Methods Heat Fluid Flow 23(1):189–204

    Article  MathSciNet  Google Scholar 

  23. Heryudono A, Driscoll T (2010) Radial basis function interpolation on irregular domain through conformal transplantation. J Sci Comput 44(3):286–300

    Article  MathSciNet  MATH  Google Scholar 

  24. Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37:1693–1702

    Article  MathSciNet  MATH  Google Scholar 

  25. Shirzadi A, Ling L, Abbasbandy S (2012) Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Eng Anal Bound Elem 36:1522–1527

    Article  MathSciNet  Google Scholar 

  26. Shirzadi A, Sladek V, Sladek J (2013) A local integral equation formulation to solve coupled nonlinear reaction-diffusion equations by using moving least square approximation. Eng Anal Bound Elem 37:8–14

    Article  MathSciNet  MATH  Google Scholar 

  27. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786

    Article  MathSciNet  MATH  Google Scholar 

  28. Ling L, Opfer R, Schaback R (2006) Results on meshless collocation techniques. Eng Anal Bound Elem 30(4):247–253

    Article  MATH  Google Scholar 

  29. Ling L, Schaback R (2008) Stable and convergent unsymmetric meshless collocation methods. SIAM J Numer Anal 46(3):1097–1115

    Article  MathSciNet  MATH  Google Scholar 

  30. Libre N, Emdadi A, Kansa E, Shekarchi M, Rahimian M (2008) A fast adaptive wavelet scheme in RBF collocation for nearly singular potential PDEs. CMES Comput Model Eng Sci 38(3):263–284

    MathSciNet  MATH  Google Scholar 

  31. Libre N, Emdadi A, Kansa E, Shekarchi M, Rahimian M (2009) A multiresolution prewavelet-based adaptive refinement scheme for RBF approximations of nearly singular problems. Eng Anal Bound Elem 33(7):901–914

    Article  MathSciNet  MATH  Google Scholar 

  32. Atluri S, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  33. Atluri S, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation. Comput Model Simul Eng 3(3):187–196

    Google Scholar 

  34. Atluri S, Zhu T (2000) New concepts in meshless methods. Int J Numer Methods Eng 13:537–556

    Article  MathSciNet  MATH  Google Scholar 

  35. Atluri S, Zhu T (2000) The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput Mech 25:169–179

    Article  MATH  Google Scholar 

  36. Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear schrödinger equation. Eng Anal Bound Elem 32:747–756

    Article  MATH  Google Scholar 

  37. Dehghan M, Mirzaei D (2009) Meshless local Petrov-Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59:1043–1058

    Article  MathSciNet  MATH  Google Scholar 

  38. Shivanian E (2016) Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    Article  MathSciNet  Google Scholar 

  39. Shivanian E (2016) Local integration of population dynamics via moving least squares approximation. Eng Comput 32:331–342

    Article  Google Scholar 

  40. Šarler B (2007) From global to local radial basis function collocation method for transport phenomena. Springer, Netherlands, pp 257–282

    MATH  Google Scholar 

  41. Trobec R, Šterk M, Robič B (2009) Computational complexity and parallelization of the meshless local Petrov–Galerkin method. Comput Struct 87(1):81–90

    Article  Google Scholar 

  42. Liu G, Yan L, Wang J, Gu Y (2002) Point interpolation method based on local residual formulation using radial basis functions. Struct Eng Mech 14:713–732

    Article  Google Scholar 

  43. Liu G, Gu Y (2001) A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J Sound Vib 246(1):29–46

    Article  Google Scholar 

  44. Shivanian E, Khodabandehlo H (2014) Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions. Eur Phys J Plus 129:241–251

    Article  Google Scholar 

  45. Shivanian E, Abbasbandy S, Alhuthali MS, Alsulami HH (2015) Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng Anal Bound Elem 56:98–105

    Article  MathSciNet  Google Scholar 

  46. Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur Phys J Plus 130(33):1–21

    Google Scholar 

  47. Aslefallah M, Shivanian E (2015) Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions. Eur Phys J Plus 130(47):1–9

    Google Scholar 

  48. Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110

    Article  MathSciNet  Google Scholar 

  49. Trefethen L (2000) Spectral methods in MATLAB. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  50. Mazzia A, Ferronato M, Pini G, Gambolati G (2007) A comparison of numerical integration rules for the meshless local Petrov-Galerkin method. Numer Algorithms 45:61–74

    Article  MathSciNet  MATH  Google Scholar 

  51. Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12

    Article  MathSciNet  Google Scholar 

  52. Shivanian E (2014) Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng 89:173–188

    Article  Google Scholar 

  53. Abbasbandy S, Shirzadi A (2011) MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Appl Numer Math 61:170–180

    Article  MathSciNet  MATH  Google Scholar 

  54. Cannon J, Lin Y, Matheson A (1993) The solution of the diffusion equation in two-space variables subject to the specification of mass. Appl Anal 50:1–19

    Article  MathSciNet  MATH  Google Scholar 

  55. Capsso V, Kunisch K (1988) A reaction-diffusion system arising in modeling man-environment diseases. Q Appl Math 46:431–449

    MATH  Google Scholar 

  56. Day W (1982) Existence of a property of solutions of the heat equation subject to linear thermoelasticity and other theories. Q Appl Math 40:319–330

    MATH  Google Scholar 

  57. Wang S, Lin Y (1989) A finite difference solution to an inverse problem determining a control function in a parabolic partial differential equations. Inverse Probl 5:631–640

    Article  MATH  Google Scholar 

  58. Dehghan M (2002) Second-order schemes for a boundary value problem with Neumann’s boundary conditions. J Comput Appl Math 138:173–184

    Article  MathSciNet  MATH  Google Scholar 

  59. Kazem S, Rad J (2012) Radial basis functions method for solving of a non-local boundary value problem with Neumann’s boundary conditions. Appl Math Model 36:2360–2369

    Article  MathSciNet  MATH  Google Scholar 

  60. Abbasbandy S, Ghehsareh HR, Alhuthali M, Alsulami H (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2- D diffusion model. Eng Anal Bound Elem 39:121–128

    Article  MathSciNet  MATH  Google Scholar 

  61. Trobec R, Kosec G, Šterk M, Šarler B (2012) Comparison of local weak and strong form meshless methods for 2-D diffusion equation. Eng Anal Bound Elem 36(3):310–321

    Article  MathSciNet  MATH  Google Scholar 

  62. Dehghan M (2003) Parallel techniques for a boundary value problem with non-classic boundary conditions. Appl Math Comput 137(2):399–412

    MathSciNet  MATH  Google Scholar 

  63. Dehghan M (2006) A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Methods Partial Differ Equ 22(1):220–257

    Article  MathSciNet  MATH  Google Scholar 

  64. Dehghan M (2005) Numerical approximations for solving a time-dependent partial differential equation with non-classical specification on four boundaries. Appl Math Comput 167(1):28–45

    MathSciNet  MATH  Google Scholar 

  65. Dehghan M (2005) Efficient techniques for the second-order parabolic equation subject to nonlocal specifications. Appl Numer Math 52(1):39–62

    Article  MathSciNet  MATH  Google Scholar 

  66. Dehghan M (2007) The one-dimensional heat equation subject to a boundary integral specification. Chaos Solitons Fractals 32(2):661–675

    Article  MathSciNet  MATH  Google Scholar 

  67. Dehghan M (2005) On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer Methods Partial Differ Equ 21(1):24–40

    Article  MathSciNet  MATH  Google Scholar 

  68. Dehghan M, Shamsi M (2006) Numerical solution of two-dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method. Numer Methods Partial Differ Equ 22(6):1255–1266

    Article  MathSciNet  MATH  Google Scholar 

  69. Tatari M, Dehghan M (2009) On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl Math Model 33(3):1729–1738

    Article  MathSciNet  MATH  Google Scholar 

  70. Dehghan M (1999) Fully implicit finite differences methods for two-dimensional diffusion with a non-local boundary condition. J Comput Appl Math 106(2):255–269

    Article  MathSciNet  MATH  Google Scholar 

  71. Cannon JR, van der Hoek J (1986) Diffusion subject to the specification of mass. J Math Anal Appl 115(2):517–529

    Article  MathSciNet  MATH  Google Scholar 

  72. Capasso V, Kunisch K (1988) A reaction-diffusion system arising in modeling man-environment diseases. Q Appl Math 46(3):431–450

    MathSciNet  MATH  Google Scholar 

  73. Gumel A, Ang W, Twizell E (1997) Efficient parallel algorithm for the two-dimensional diffusion equation subject to specification of mass. Int J Comput Math 64(1–2):153–163

    Article  MathSciNet  MATH  Google Scholar 

  74. Dehghan M (2002) A new ADI technique for two-dimensional parabolic equation with an integral condition. Comput Math Appl 43(12):1477–1488

    Article  MathSciNet  MATH  Google Scholar 

  75. Dehghan M (2002) Fully explicit finite-difference methods for two-dimensional diffusion with an integral condition. Nonlinear Anal Theory Methods Appl 48(5):637–650

    Article  MathSciNet  MATH  Google Scholar 

  76. Dehghan M (2002) Numerical solution of the three-dimensional parabolic equation with an integral condition. Numer Methods Partial Differ Equ 18(2):193–202

    Article  MathSciNet  MATH  Google Scholar 

  77. Wang J, Liu G (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648

    Article  MATH  Google Scholar 

  78. Wang J, Liu G (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Math 191:2611–2630

    MathSciNet  MATH  Google Scholar 

  79. Franke C, Schaback R (1997) Solving partial differential equations by collocation using radial basis functions. Appl Math Comput 93:73–82

    MathSciNet  MATH  Google Scholar 

  80. Sharan M, Kansa E, Gupta S (1997) Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 84:275–302

    MathSciNet  MATH  Google Scholar 

  81. Powell MJ (1990) The theory of radial basis function approximation in 1990. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, pp 105–209

  82. Wendland H (1998) Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J Approx Theory 93:258–396

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is very grateful to two anonymous reviewers for carefully reading the paper and for their comments and suggestions which have improved the paper very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyas Shivanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivanian, E. More accurate results for two-dimensional heat equation with Neumann’s and non-classical boundary conditions. Engineering with Computers 32, 729–743 (2016). https://doi.org/10.1007/s00366-016-0449-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0449-y

Keywords

Navigation