Skip to main content

Ten challenges in 3D printing

Abstract

Three dimensional printing has gained considerable interest lately due to the proliferation of inexpensive devices as well as open source software that drive those devices. Public interest is often followed by media coverage that tends to sensationalize technology. Based on popular articles, the public may create the impression that 3D printing is the Holy Grail; we are going to print everything as one piece, traditional manufacturing is at the brink of collapse, and exotic applications, such as cloning a human body by 3D bio-printing, are just around the corner. The purpose of this paper is to paint a more realistic picture by identifying ten challenges that clearly illustrate the limitations of this technology, which makes it just as vulnerable as anything else that had been touted before as the next game changer.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Gardan N, Schneider A (2014) Topological optimization of internal patterns and support in additive manufacturing. J Manuf Syst. doi:10.1016/j.jmsy.2014.07.003

    Google Scholar 

  2. Galantucci LM, Lavecchia F, Percoco G (2008) Study of compression properties of topologically optimized FDM made structured parts. CIRP Ann Manuf Technol 57(1):243–246. doi:10.1016/j.cirp.2008.03.009

    Article  Google Scholar 

  3. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, New York. doi:10.1007/978-1-4419-1120-9

    Book  Google Scholar 

  4. Chu J, Engelbrecht S, Graf G, Rosen D (2010) A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyp J 16(4):275–283. doi:10.1108/13552541011049298

    Article  Google Scholar 

  5. Vayre B, Vignat F, Villeneuve F (2012) Designing for additive manufacturing. Procedia CIRP 3:632–637. doi:10.1016/j.procir.2012.07.108

    Article  Google Scholar 

  6. Rezaie R, Badrossamay M, Ghaie A, Moosavi H (2013) Topology optimization for fused deposition modeling process. Procedia CIRP 6:521–526. doi:10.1016/j.procir.2013.03.098

    Article  Google Scholar 

  7. Mellor S, Hao L, Zhang D (2014) Additive manufacturing: a framework for implementation. Int J Prod Econ 149:194–201. doi:10.1016/j.ijpe.2013.07.008

    Article  Google Scholar 

  8. Lipson H, Moon F, Hai J, Paventi C (2005) 3D printing the history of mechanisms. J Mech Des 127(5):1029–1033. doi:10.1115/1.1902999

    Article  Google Scholar 

  9. Calì J, Calian D, Amati C, Kleinberger R, Steed A, Kautz J, Weyrich T (2012) 3D-printing of non-assembly, articulated models. ACM Trans Graph TOG 31(6):130. doi:10.1145/2366145.2366149

    Google Scholar 

  10. Navangul G, Paul R, Anand S (2013) Error minimization in layered manufacturing parts by stereolithography file modification using a vertex translation algorithm. J Manuf Sci Eng 135(3):031006. doi:10.1115/1.4024035

    Article  Google Scholar 

  11. Ahn D, Kim H, Lee S (2007) Fabrication direction optimization to minimize post-machining in layered manufacturing. Int J Mach Tools Manuf 47(3):593–606. doi:10.1016/j.ijmachtools.2006.05.004

    MathSciNet  Article  Google Scholar 

  12. Kulkarni P, Marsan A, Dutta D (2000) A review of process planning techniques in layered manufacturing. Rapid Prototyp J 6(1):18–35. doi:10.1108/13552540010309859

    Article  Google Scholar 

  13. Finishing processes: bond, seal and beautify 3D printed parts. http://www.stratasys.com/solutions-applications/finishing-processes

  14. Brajlih T, Valentan B, Balic J, Drstvensek I (2011) Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyp J 17(1):64–75. doi:10.1108/13552541111098644

    Article  Google Scholar 

  15. Pandey PM, Venkata Reddy N, Dhande SG (2003) Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf 43(1):61–71. doi:10.1016/S0890-6955(02)00164-5

    Article  Google Scholar 

  16. Hiller J, Lipson H (2009) Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyp J 15(2):137–149. doi:10.1108/13552540910943441

    Article  Google Scholar 

  17. Kai CC, Fai L, Chu-Sing L (2003) Rapid prototyping: principles and applications in manufacturing. World Scientific Publishing Co., Inc, Singapore

    Google Scholar 

  18. Chen Y, Zhou C, Lao J (2011) A layerless additive manufacturing process based on CNC accumulation. Rapid Prototyp J 17(3):218–227. doi:10.1108/13552541111124806

    Article  Google Scholar 

  19. Keating S, Oxman N (2013) Compound fabrication: a multi-functional robotic platform for digital design and fabrication. Robotics Comput-Integr Manuf 29(6):439–448. doi:10.1016/j.rcim.2013.05.001

    Article  Google Scholar 

  20. Song X, Pan Y, Chen Y (2015) Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing. J Manuf Sci Eng 137(2):021005. doi:10.1115/1.4028897

    Article  Google Scholar 

  21. Tong K (2003) Amine Lehtihet E.; Joshi, S.: parametric error modeling and software error compensation for rapid prototyping. Rapid Prototyp J 9(5):301–313. doi:10.1108/13552540310502202

    Article  Google Scholar 

  22. Liu W, Li L, Kochhar AK (1998) A method for assessing geometrical errors in layered manufacturing. Part 1: error interaction and transfer mechanisms. Int J Adv Manuf Technol 14(9):637–643. doi:10.1007/BF01192283

    MATH  Article  Google Scholar 

  23. Shin K-H, Natu H, Dutta D, Mazumder J (2003) A method for the design and fabrication of heterogeneous objects. Mater Des 24(5):339–353. doi:10.1016/S0261-3069(03)00060-8

    Article  Google Scholar 

  24. Kou XY, Tan ST (2007) Heterogeneous object modeling: a review. Comput Aided Des 39(4):284–301. doi:10.1016/j.cad.2006.12.007

    Article  Google Scholar 

  25. Dutta D, Prinz FB, Rosen DW, Weiss LE (2001) Layered manufacturing: current status and future trends. J Comput Inf Sci Eng 1(1):60–71. doi:10.1115/1.1355029

    Article  Google Scholar 

  26. Compton B, Lewis J (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935. doi:10.1002/adma.201401804

    Article  Google Scholar 

  27. Christ S, Christ S, Schnabel M, Vorndran E, Groll J, Gbureck U (2015) Fiber reinforcement during 3D printing. Mater Lett 139:165–168. doi:10.1016/j.matlet.2014.10.065

    Article  Google Scholar 

  28. Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38(10–11):1257–1287. doi:10.1016/S0890-6955(97)00137-5

    Article  Google Scholar 

  29. Pandey PM, Venkata Reddy N, Dhande SG (2007) Part deposition orientation studies in layered manufacturing. J Mater Process Technol 185(1):125–131. doi:10.1016/j.jmatprotec.2006.03.120

    Article  Google Scholar 

  30. Ma W, But W-C, He P (2004) NURBS-based adaptive slicing for efficient rapid prototyping. Comput Aided Des 36(13):1309–1325. doi:10.1016/j.cad.2004.02.001

    Article  Google Scholar 

  31. Pandey PM (2003) Venkata Reddy, N.; Dhande, S. G.: slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288. doi:10.1108/13552540310502185

    Article  Google Scholar 

  32. Phatak AM, Pande SS (2012) Optimum part orientation in rapid prototyping using genetic algorithm. J Manuf Syst 31(4):395–402. doi:10.1016/j.jmsy.2012.07.001

    Article  Google Scholar 

  33. Sun SH, Chiang HW, Lee MI (2007) Adaptive direct slicing of a commercial CAD model for use in rapid prototyping. Int J Adv Manuf Technol 34(7–8):689–701. doi:10.1007/s00170-006-0651-y

    Article  Google Scholar 

  34. Campbell I, Combrinck J, de Beer D, Barnard L (2008) Stereolithography build time estimation based on volumetric calculations. Rapid Prototyp J 14(5):271–279. doi:10.1108/13552540810907938

    Article  Google Scholar 

  35. Roberson DA, Espalin D, Wicker RB (2013) 3D printer selection: a decision-making evaluation and ranking model. Virtual Phys Prototyp 8(3):201–212. doi:10.1080/17452759.2013.830939

    Article  Google Scholar 

  36. Piegl LA (2005) Ten challenges in Computer-Aided Design. Comput Aided Des 37(4):461–470. doi:10.1016/j.cad.2004.08.012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Les A. Piegl.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oropallo, W., Piegl, L.A. Ten challenges in 3D printing. Engineering with Computers 32, 135–148 (2016). https://doi.org/10.1007/s00366-015-0407-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-015-0407-0

Keywords

  • 3D printing
  • Additive manufacturing
  • Optimization
  • Part orientation
  • Design for printing