Advertisement

Engineering with Computers

, Volume 32, Issue 1, pp 135–148 | Cite as

Ten challenges in 3D printing

  • William Oropallo
  • Les A. PieglEmail author
Original Article

Abstract

Three dimensional printing has gained considerable interest lately due to the proliferation of inexpensive devices as well as open source software that drive those devices. Public interest is often followed by media coverage that tends to sensationalize technology. Based on popular articles, the public may create the impression that 3D printing is the Holy Grail; we are going to print everything as one piece, traditional manufacturing is at the brink of collapse, and exotic applications, such as cloning a human body by 3D bio-printing, are just around the corner. The purpose of this paper is to paint a more realistic picture by identifying ten challenges that clearly illustrate the limitations of this technology, which makes it just as vulnerable as anything else that had been touted before as the next game changer.

Keywords

3D printing Additive manufacturing Optimization Part orientation Design for printing 

References

  1. 1.
    Gardan N, Schneider A (2014) Topological optimization of internal patterns and support in additive manufacturing. J Manuf Syst. doi: 10.1016/j.jmsy.2014.07.003 Google Scholar
  2. 2.
    Galantucci LM, Lavecchia F, Percoco G (2008) Study of compression properties of topologically optimized FDM made structured parts. CIRP Ann Manuf Technol 57(1):243–246. doi: 10.1016/j.cirp.2008.03.009 CrossRefGoogle Scholar
  3. 3.
    Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, New York. doi: 10.1007/978-1-4419-1120-9 CrossRefGoogle Scholar
  4. 4.
    Chu J, Engelbrecht S, Graf G, Rosen D (2010) A comparison of synthesis methods for cellular structures with application to additive manufacturing. Rapid Prototyp J 16(4):275–283. doi: 10.1108/13552541011049298 CrossRefGoogle Scholar
  5. 5.
    Vayre B, Vignat F, Villeneuve F (2012) Designing for additive manufacturing. Procedia CIRP 3:632–637. doi: 10.1016/j.procir.2012.07.108 CrossRefGoogle Scholar
  6. 6.
    Rezaie R, Badrossamay M, Ghaie A, Moosavi H (2013) Topology optimization for fused deposition modeling process. Procedia CIRP 6:521–526. doi: 10.1016/j.procir.2013.03.098 CrossRefGoogle Scholar
  7. 7.
    Mellor S, Hao L, Zhang D (2014) Additive manufacturing: a framework for implementation. Int J Prod Econ 149:194–201. doi: 10.1016/j.ijpe.2013.07.008 CrossRefGoogle Scholar
  8. 8.
    Lipson H, Moon F, Hai J, Paventi C (2005) 3D printing the history of mechanisms. J Mech Des 127(5):1029–1033. doi: 10.1115/1.1902999 CrossRefGoogle Scholar
  9. 9.
    Calì J, Calian D, Amati C, Kleinberger R, Steed A, Kautz J, Weyrich T (2012) 3D-printing of non-assembly, articulated models. ACM Trans Graph TOG 31(6):130. doi: 10.1145/2366145.2366149 Google Scholar
  10. 10.
    Navangul G, Paul R, Anand S (2013) Error minimization in layered manufacturing parts by stereolithography file modification using a vertex translation algorithm. J Manuf Sci Eng 135(3):031006. doi: 10.1115/1.4024035 CrossRefGoogle Scholar
  11. 11.
    Ahn D, Kim H, Lee S (2007) Fabrication direction optimization to minimize post-machining in layered manufacturing. Int J Mach Tools Manuf 47(3):593–606. doi: 10.1016/j.ijmachtools.2006.05.004 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kulkarni P, Marsan A, Dutta D (2000) A review of process planning techniques in layered manufacturing. Rapid Prototyp J 6(1):18–35. doi: 10.1108/13552540010309859 CrossRefGoogle Scholar
  13. 13.
    Finishing processes: bond, seal and beautify 3D printed parts. http://www.stratasys.com/solutions-applications/finishing-processes
  14. 14.
    Brajlih T, Valentan B, Balic J, Drstvensek I (2011) Speed and accuracy evaluation of additive manufacturing machines. Rapid Prototyp J 17(1):64–75. doi: 10.1108/13552541111098644 CrossRefGoogle Scholar
  15. 15.
    Pandey PM, Venkata Reddy N, Dhande SG (2003) Real time adaptive slicing for fused deposition modelling. Int J Mach Tools Manuf 43(1):61–71. doi: 10.1016/S0890-6955(02)00164-5 CrossRefGoogle Scholar
  16. 16.
    Hiller J, Lipson H (2009) Design and analysis of digital materials for physical 3D voxel printing. Rapid Prototyp J 15(2):137–149. doi: 10.1108/13552540910943441 CrossRefGoogle Scholar
  17. 17.
    Kai CC, Fai L, Chu-Sing L (2003) Rapid prototyping: principles and applications in manufacturing. World Scientific Publishing Co., Inc, SingaporeGoogle Scholar
  18. 18.
    Chen Y, Zhou C, Lao J (2011) A layerless additive manufacturing process based on CNC accumulation. Rapid Prototyp J 17(3):218–227. doi: 10.1108/13552541111124806 CrossRefGoogle Scholar
  19. 19.
    Keating S, Oxman N (2013) Compound fabrication: a multi-functional robotic platform for digital design and fabrication. Robotics Comput-Integr Manuf 29(6):439–448. doi: 10.1016/j.rcim.2013.05.001 CrossRefGoogle Scholar
  20. 20.
    Song X, Pan Y, Chen Y (2015) Development of a low-cost parallel kinematic machine for multidirectional additive manufacturing. J Manuf Sci Eng 137(2):021005. doi: 10.1115/1.4028897 CrossRefGoogle Scholar
  21. 21.
    Tong K (2003) Amine Lehtihet E.; Joshi, S.: parametric error modeling and software error compensation for rapid prototyping. Rapid Prototyp J 9(5):301–313. doi: 10.1108/13552540310502202 CrossRefGoogle Scholar
  22. 22.
    Liu W, Li L, Kochhar AK (1998) A method for assessing geometrical errors in layered manufacturing. Part 1: error interaction and transfer mechanisms. Int J Adv Manuf Technol 14(9):637–643. doi: 10.1007/BF01192283 zbMATHCrossRefGoogle Scholar
  23. 23.
    Shin K-H, Natu H, Dutta D, Mazumder J (2003) A method for the design and fabrication of heterogeneous objects. Mater Des 24(5):339–353. doi: 10.1016/S0261-3069(03)00060-8 CrossRefGoogle Scholar
  24. 24.
    Kou XY, Tan ST (2007) Heterogeneous object modeling: a review. Comput Aided Des 39(4):284–301. doi: 10.1016/j.cad.2006.12.007 CrossRefGoogle Scholar
  25. 25.
    Dutta D, Prinz FB, Rosen DW, Weiss LE (2001) Layered manufacturing: current status and future trends. J Comput Inf Sci Eng 1(1):60–71. doi: 10.1115/1.1355029 CrossRefGoogle Scholar
  26. 26.
    Compton B, Lewis J (2014) 3D-printing of lightweight cellular composites. Adv Mater 26(34):5930–5935. doi: 10.1002/adma.201401804 CrossRefGoogle Scholar
  27. 27.
    Christ S, Christ S, Schnabel M, Vorndran E, Groll J, Gbureck U (2015) Fiber reinforcement during 3D printing. Mater Lett 139:165–168. doi: 10.1016/j.matlet.2014.10.065 CrossRefGoogle Scholar
  28. 28.
    Pham DT, Gault RS (1998) A comparison of rapid prototyping technologies. Int J Mach Tools Manuf 38(10–11):1257–1287. doi: 10.1016/S0890-6955(97)00137-5 CrossRefGoogle Scholar
  29. 29.
    Pandey PM, Venkata Reddy N, Dhande SG (2007) Part deposition orientation studies in layered manufacturing. J Mater Process Technol 185(1):125–131. doi: 10.1016/j.jmatprotec.2006.03.120 CrossRefGoogle Scholar
  30. 30.
    Ma W, But W-C, He P (2004) NURBS-based adaptive slicing for efficient rapid prototyping. Comput Aided Des 36(13):1309–1325. doi: 10.1016/j.cad.2004.02.001 CrossRefGoogle Scholar
  31. 31.
    Pandey PM (2003) Venkata Reddy, N.; Dhande, S. G.: slicing procedures in layered manufacturing: a review. Rapid Prototyp J 9(5):274–288. doi: 10.1108/13552540310502185 CrossRefGoogle Scholar
  32. 32.
    Phatak AM, Pande SS (2012) Optimum part orientation in rapid prototyping using genetic algorithm. J Manuf Syst 31(4):395–402. doi: 10.1016/j.jmsy.2012.07.001 CrossRefGoogle Scholar
  33. 33.
    Sun SH, Chiang HW, Lee MI (2007) Adaptive direct slicing of a commercial CAD model for use in rapid prototyping. Int J Adv Manuf Technol 34(7–8):689–701. doi: 10.1007/s00170-006-0651-y CrossRefGoogle Scholar
  34. 34.
    Campbell I, Combrinck J, de Beer D, Barnard L (2008) Stereolithography build time estimation based on volumetric calculations. Rapid Prototyp J 14(5):271–279. doi: 10.1108/13552540810907938 CrossRefGoogle Scholar
  35. 35.
    Roberson DA, Espalin D, Wicker RB (2013) 3D printer selection: a decision-making evaluation and ranking model. Virtual Phys Prototyp 8(3):201–212. doi: 10.1080/17452759.2013.830939 CrossRefGoogle Scholar
  36. 36.
    Piegl LA (2005) Ten challenges in Computer-Aided Design. Comput Aided Des 37(4):461–470. doi: 10.1016/j.cad.2004.08.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA

Personalised recommendations