Abstract
This paper aims to introduce a unified code for fluid flow modeling in complex channels reconstructed from imagery. Given a binary image of a cross-section or projection of planar connected channels with circular cross-sections, we wish to: (1) reconstruct a three-dimensional model of the boundary of the geometry, (2) establish boundary condition of the flow field, and (3) compute a fluid simulation based on a Cartesian grid. Our solution has the following advantages. First, we use the same mathematical tools throughout the process i.e. a level set function and a skeleton to describe the geometry. The skeleton of the geometry is essential in the imagery part to transform the 2D geometry into a 3D geometry but is also essential in the fluid flow part to construct a velocity field of reference for boundary conditions in the mechanical fluid flow model. Then, the integration of the geometry into the fluid mechanic code is simplified thanks to a Cartesian grid taking into account the geometry through the level set function. Finally, this work leads to a stand-alone code capable of simulating 3D flows in geometry reconstructed 2D images. We show its usefulness in applications to medical imagery (namely angiography) and bifluid flows in microchannels.
This is a preview of subscription content, access via your institution.



















References
- 1.
Goel VR, Greenberg RK, Greenberg DP (2008) Automated vascular geometric analysis of aortic aneurysms. IEEE Comput Gr Appl 28(3):76–86
- 2.
Hall RW (1989) Fast parallel thinning algorithms: parallel speed and connectivity preservation. Commun ACM 32:124–131
- 3.
Ferley E, Cani M-P, Attali D (1996) Skeletal reconstruction of branching shapes. In: Hart JC, Van Overveld K, (eds), Implicit surfaces ’96, vol 31. Marie-Paule Cani-Gascuel, Eindhoven, pp 127–142
- 4.
Ginzburg V, Landau L (1950) On the theory of superconductivity. Zheksper Teo Fiz 20
- 5.
Shui L, van den Berg A, Eijkel JCT (2009) Interfacial tension controlled w/o and o/w 2-phase flows in microchannel. Lab Chip 9
- 6.
Engl W, Roche M, Colin A, Panizza P, Ajdari A (2005) Droplet traffic at a simple junction at low capillary numbers. Phys Rev Lett 95:208304
- 7.
Engl W, Ohata K, Guillot P, Colin A, Panizza P (2006) Selection of two-phase flow patterns at a simple junction in microfluidic devices. Phys Rev Lett 96:134505
- 8.
Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer-Verlag New York Inc, Secaucus
- 9.
Fremlin DH (1997) Skeletons and central sets. In: Proceedings of the London Mathematical Society, vol 74(3). London Mathematical Society, pp 701–720.
- 10.
Bernhardt A, Pihuit A, Cani MP, Barthe L (2008) Matisse: painting 2D regions for modeling free-form shapes
- 11.
Igarashi T, Matsuoka S, Tanaka H (1999) Teddy: a sketching interface for 3D freeform design. pp 409–416
- 12.
Gasteiger R, Neugebauer M, Kubisch C, Preim B (2010) Adapted Surface Visualization of Cerebral Aneurysms with Embedded Blood Flow Information. In: Eurographics workshop on visual computing for biology and medicine (EG VCBM), pp 25–32
- 13.
Schumann C, Neugebauer M, Bade R, Preim B, Peitgen H-O (2008) Implicit vessel surface reconstruction for visualization and simulation. Int J Comput Assist Radiol Surg (IJCARS) 2(5):275–286
- 14.
Tozaki T, Kawata Y, Niki N, Ohmatsu H, Moriyama N (1995) 3D visualization of blood vessels and tumor using thin slice CT. IEEE Nucl Sci Symp Med Imaging Conf 3:1470–1474
- 15.
Kawata Y, Niki N, Kumazaki T (1995) An approach for detecting blood vessel diseases from cone-beam CT image. In: IEEE International Conference on Image Processing pp 500–503
- 16.
Slabaugh G, Unal G, Fang T, Rossignac J, Whited B (2008) Variational skinning of an ordered set of discrete 2d balls. In: Proceedings of the 5th international conference on advances in geometric modeling and processing, GMP’08, Springer, Heidelberg, pp 450–461
- 17.
Whited B, Rossignac J, Slabaugh G, Fang T, Unal G (2009) Pearling: stroke segmentation with crusted pearl strings. Pattern Recognit Image Anal 19:277–283 doi:10.1134/S1054661809020102
- 18.
Slabaugh G, Whited B, Rossignac J, Fang T, Unal G (2010) 3D ball skinning using pdes for generation of smooth tubular surfaces. Comput Aided Des 42(1):18–26
- 19.
Rossignac J, Whited B, Slabaugh G, Fang T, Unal G (2007) Pearling: 3D interactive extraction of tubular structures from volumetric images. In: MICCAI workshop interaction in medical image analysis and visualization
- 20.
Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vis 1(4):321–331
- 21.
Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, Westin C-F (2001) Curves: curve evolution for vessel segmentation. Med Image Anal 5(3):195–206
- 22.
Shah J, Mumford D (1985) Boundary detection by minimizing functionals. In: IEEE conference on computer vision and patter recognition, pp 22–26
- 23.
Shah J, Mumford D (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42: 577–685
- 24.
Bertozzi AL, Esedoglu S, Gillette A (2007) Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans Image Process 16(1):285–291
- 25.
Aubert G, Aujol J-F, Blanc-Féraud L (2005) Detecting codimension: two objects in an image with Ginzburg–Landau models. Int J Comput Vis 65(1–2):29–42
- 26.
Pal N, Pal S (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294
- 27.
Sethian JA (1999) Level set methods and fast marching methods, ISBN 0-521-64557-3
- 28.
Jiang X, Bunke H (1999) Edge detection in range images based on scan line approximation. Comput Vis Image Underst 73:183–199
- 29.
Yim Y, Hong H (2006) Smoothing segmented lung boundary in chest ct images using scan line search. In: Progress in pattern recognition, image analysis and applications, vol 4225 of Lecture Notes in Computer Science, Springer, Heidelberg, pp 147–156
- 30.
Telea A, van Wijk JJ (2002) An augmented fast marching method for computing skeletons and centerlines. In: VISSYM ’02 Proceedings of the symposium on data visualisation, Eurographics Association, Aire-la-Ville, pp 251–258
- 31.
Osher S, Sethian JA (1988) Fronts propagating with curvature dependant speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49
- 32.
Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Appl Math Sci p 153
- 33.
Mark Sussman PS, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159
- 34.
Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37
- 35.
Kothe DB, Brackbill JU, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354
- 36.
Galusinski C, Vigneaux P (2008) On stability condition for bifluid flows with surface tension: application to microfluidics. J Comput Phys 227(12):6140–6164
- 37.
Jiang G-S, Peng D (2000) Weighted eno schemes for hamilton-jacobi equations. SIAM J Sci Comput 21(6):2126–2143
- 38.
Salmon S, Thiriet M, Gerbeau J-F (2003) Medical image-based computational model of pulsatile flow in saccular aneurisms. M2AN Math Model Numer Anal 37(4):663–679
- 39.
Astorino M, Gerbeau J-F, Pantz O, Traoré K-F (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46):3603–3612
- 40.
Cottet G-H, Maitre E (2006) A level set method for fluid-structure interactions with immersed surfaces. Math Models Methods Appl Sci 16(3):415–438
- 41.
Maitre E, Milcent T, Cottet G-H, Raoult A, Usson Y (2009) Applications of level set methods in computational biophysics. Math Comput Model 49(11–12):2161–2169
Acknowledgments
This work has been supported by French National Research Agency (ANR) through COSINUS program (project CARPEINTER ANR-08-COSI-002).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Galusinski, C., Nguyen, C. Skeleton and level set for channel construction and flow simulation. Engineering with Computers 31, 289–303 (2015). https://doi.org/10.1007/s00366-014-0351-4
Received:
Accepted:
Published:
Issue Date:
Keywords
- 3D channel reconstruction
- Segmentation
- Level set
- Skeleton
- Flow simulation