Skeleton and level set for channel construction and flow simulation

Abstract

This paper aims to introduce a unified code for fluid flow modeling in complex channels reconstructed from imagery. Given a binary image of a cross-section or projection of planar connected channels with circular cross-sections, we wish to: (1) reconstruct a three-dimensional model of the boundary of the geometry, (2) establish boundary condition of the flow field, and (3) compute a fluid simulation based on a Cartesian grid. Our solution has the following advantages. First, we use the same mathematical tools throughout the process i.e. a level set function and a skeleton to describe the geometry. The skeleton of the geometry is essential in the imagery part to transform the 2D geometry into a 3D geometry but is also essential in the fluid flow part to construct a velocity field of reference for boundary conditions in the mechanical fluid flow model. Then, the integration of the geometry into the fluid mechanic code is simplified thanks to a Cartesian grid taking into account the geometry through the level set function. Finally, this work leads to a stand-alone code capable of simulating 3D flows in geometry reconstructed 2D images. We show its usefulness in applications to medical imagery (namely angiography) and bifluid flows in microchannels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Goel VR, Greenberg RK, Greenberg DP (2008) Automated vascular geometric analysis of aortic aneurysms. IEEE Comput Gr Appl 28(3):76–86

    Article  Google Scholar 

  2. 2.

    Hall RW (1989) Fast parallel thinning algorithms: parallel speed and connectivity preservation. Commun ACM 32:124–131

    Article  Google Scholar 

  3. 3.

    Ferley E, Cani M-P, Attali D (1996) Skeletal reconstruction of branching shapes. In: Hart JC, Van Overveld K, (eds), Implicit surfaces ’96, vol 31. Marie-Paule Cani-Gascuel, Eindhoven, pp 127–142

    Google Scholar 

  4. 4.

    Ginzburg V, Landau L (1950) On the theory of superconductivity. Zheksper Teo Fiz 20

  5. 5.

    Shui L, van den Berg A, Eijkel JCT (2009) Interfacial tension controlled w/o and o/w 2-phase flows in microchannel. Lab Chip 9

  6. 6.

    Engl W, Roche M, Colin A, Panizza P, Ajdari A (2005) Droplet traffic at a simple junction at low capillary numbers. Phys Rev Lett 95:208304

    Article  Google Scholar 

  7. 7.

    Engl W, Ohata K, Guillot P, Colin A, Panizza P (2006) Selection of two-phase flow patterns at a simple junction in microfluidic devices. Phys Rev Lett 96:134505

    Article  Google Scholar 

  8. 8.

    Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer-Verlag New York Inc, Secaucus

    MATH  Google Scholar 

  9. 9.

    Fremlin DH (1997) Skeletons and central sets. In: Proceedings of the London Mathematical Society, vol 74(3). London Mathematical Society, pp 701–720.

  10. 10.

    Bernhardt A, Pihuit A, Cani MP, Barthe L (2008) Matisse: painting 2D regions for modeling free-form shapes

  11. 11.

    Igarashi T, Matsuoka S, Tanaka H (1999) Teddy: a sketching interface for 3D freeform design. pp 409–416

  12. 12.

    Gasteiger R, Neugebauer M, Kubisch C, Preim B (2010) Adapted Surface Visualization of Cerebral Aneurysms with Embedded Blood Flow Information. In: Eurographics workshop on visual computing for biology and medicine (EG VCBM), pp 25–32

  13. 13.

    Schumann C, Neugebauer M, Bade R, Preim B, Peitgen H-O (2008) Implicit vessel surface reconstruction for visualization and simulation. Int J Comput Assist Radiol Surg (IJCARS) 2(5):275–286

    Article  Google Scholar 

  14. 14.

    Tozaki T, Kawata Y, Niki N, Ohmatsu H, Moriyama N (1995) 3D visualization of blood vessels and tumor using thin slice CT. IEEE Nucl Sci Symp Med Imaging Conf 3:1470–1474

    Google Scholar 

  15. 15.

    Kawata Y, Niki N, Kumazaki T (1995) An approach for detecting blood vessel diseases from cone-beam CT image. In: IEEE International Conference on Image Processing pp 500–503

  16. 16.

    Slabaugh G, Unal G, Fang T, Rossignac J, Whited B (2008) Variational skinning of an ordered set of discrete 2d balls. In: Proceedings of the 5th international conference on advances in geometric modeling and processing, GMP’08, Springer, Heidelberg, pp 450–461

  17. 17.

    Whited B, Rossignac J, Slabaugh G, Fang T, Unal G (2009) Pearling: stroke segmentation with crusted pearl strings. Pattern Recognit Image Anal 19:277–283 doi:10.1134/S1054661809020102

    Article  Google Scholar 

  18. 18.

    Slabaugh G, Whited B, Rossignac J, Fang T, Unal G (2010) 3D ball skinning using pdes for generation of smooth tubular surfaces. Comput Aided Des 42(1):18–26

    Article  MATH  Google Scholar 

  19. 19.

    Rossignac J, Whited B, Slabaugh G, Fang T, Unal G (2007) Pearling: 3D interactive extraction of tubular structures from volumetric images. In: MICCAI workshop interaction in medical image analysis and visualization

  20. 20.

    Kass M, Witkin A, Terzopoulos D (1988) Snakes: Active contour models. Int J Comput Vis 1(4):321–331

    Article  Google Scholar 

  21. 21.

    Lorigo LM, Faugeras OD, Grimson WEL, Keriven R, Kikinis R, Nabavi A, Westin C-F (2001) Curves: curve evolution for vessel segmentation. Med Image Anal 5(3):195–206

    Article  Google Scholar 

  22. 22.

    Shah J, Mumford D (1985) Boundary detection by minimizing functionals. In: IEEE conference on computer vision and patter recognition, pp 22–26

  23. 23.

    Shah J, Mumford D (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42: 577–685

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    Bertozzi AL, Esedoglu S, Gillette A (2007) Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans Image Process 16(1):285–291

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Aubert G, Aujol J-F, Blanc-Féraud L (2005) Detecting codimension: two objects in an image with Ginzburg–Landau models. Int J Comput Vis 65(1–2):29–42

    Article  MATH  Google Scholar 

  26. 26.

    Pal N, Pal S (1993) A review on image segmentation techniques. Pattern Recognit 26(9):1277–1294

    Article  Google Scholar 

  27. 27.

    Sethian JA (1999) Level set methods and fast marching methods, ISBN 0-521-64557-3

  28. 28.

    Jiang X, Bunke H (1999) Edge detection in range images based on scan line approximation. Comput Vis Image Underst 73:183–199

    Article  Google Scholar 

  29. 29.

    Yim Y, Hong H (2006) Smoothing segmented lung boundary in chest ct images using scan line search. In: Progress in pattern recognition, image analysis and applications, vol 4225 of Lecture Notes in Computer Science, Springer, Heidelberg, pp 147–156

  30. 30.

    Telea A, van Wijk JJ (2002) An augmented fast marching method for computing skeletons and centerlines. In: VISSYM ’02 Proceedings of the symposium on data visualisation, Eurographics Association, Aire-la-Ville, pp 251–258

  31. 31.

    Osher S, Sethian JA (1988) Fronts propagating with curvature dependant speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  32. 32.

    Osher S, Fedkiw R (2003) Level set methods and dynamic implicit surfaces. Appl Math Sci p 153

  33. 33.

    Mark Sussman PS, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114:146–159

    Article  MATH  Google Scholar 

  34. 34.

    Unverdi SO, Tryggvason G (1992) A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys 100(1):25–37

    Article  MATH  Google Scholar 

  35. 35.

    Kothe DB, Brackbill JU, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Galusinski C, Vigneaux P (2008) On stability condition for bifluid flows with surface tension: application to microfluidics. J Comput Phys 227(12):6140–6164

    Article  MATH  MathSciNet  Google Scholar 

  37. 37.

    Jiang G-S, Peng D (2000) Weighted eno schemes for hamilton-jacobi equations. SIAM J Sci Comput 21(6):2126–2143

    Article  MATH  MathSciNet  Google Scholar 

  38. 38.

    Salmon S, Thiriet M, Gerbeau J-F (2003) Medical image-based computational model of pulsatile flow in saccular aneurisms. M2AN Math Model Numer Anal 37(4):663–679

    Article  MATH  MathSciNet  Google Scholar 

  39. 39.

    Astorino M, Gerbeau J-F, Pantz O, Traoré K-F (2009) Fluid-structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46):3603–3612

    Article  MATH  Google Scholar 

  40. 40.

    Cottet G-H, Maitre E (2006) A level set method for fluid-structure interactions with immersed surfaces. Math Models Methods Appl Sci 16(3):415–438

    Article  MATH  MathSciNet  Google Scholar 

  41. 41.

    Maitre E, Milcent T, Cottet G-H, Raoult A, Usson Y (2009) Applications of level set methods in computational biophysics. Math Comput Model 49(11–12):2161–2169

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by French National Research Agency (ANR) through COSINUS program (project CARPEINTER ANR-08-COSI-002).

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Galusinski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galusinski, C., Nguyen, C. Skeleton and level set for channel construction and flow simulation. Engineering with Computers 31, 289–303 (2015). https://doi.org/10.1007/s00366-014-0351-4

Download citation

Keywords

  • 3D channel reconstruction
  • Segmentation
  • Level set
  • Skeleton
  • Flow simulation