Skip to main content

Automatic p-version mesh generation for curved domains


To achieve the exponential rates of convergence possible with the p-version finite element method requires properly constructed meshes. In the case of piecewise smooth domains, these meshes are characterized by having large curved elements over smooth portions of the domain and geometrically graded curved elements to isolate the edge and vertex singularities that are of interest. This paper presents a procedure under development for the automatic generation of such meshes for general three-dimensional domains defined in solid modeling systems. Two key steps in the procedure are the determination of the singular model edges and vertices, and the creation of geometrically graded elements around those entities. The other key step is the use of general curved element mesh modification procedures to correct any invalid elements created by the curving of mesh entities on the model boundary, which is required to ensure a properly geometric approximation of the domain. Example meshes are included to demonstrate the features of the procedure.

This is a preview of subscription content, access via your institution.

Fig. 1a, b
Fig. 2a, b
Fig. 3
Fig. 4
Fig. 5a, b
Fig. 6
Fig. 7
Fig. 8a–d
Fig. 9a–c
Fig. 10a, b
Fig. 11a–c
Fig. 12a–c
Fig. 13a, b
Fig. 14a–c
Fig. 15 a, b
Fig. 16 a, b
Fig. 17 a–e
Fig. 18
Fig. 19


  1. A mesh face or edge that lies on a model face is “classified on that model face” and a mesh edge that lies on a model classified on a model edge is “classified on that model edge.”


  1. Anderson B, Falk U, Babuska I, Petersdorff TV (1995) Reliable stress and fracture mechanics analysis of complex components using a hp version of FEM. Int J Numer Methods Eng 38:2135–2163

    Google Scholar 

  2. Babuska I, Suri M (1994) The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev 36(4):578–632

    MathSciNet  MATH  Google Scholar 

  3. Babuska I, Petersdorff TV, Anderson B (1994) Numerical treatment of vertex singularities and intensity factors for mixed boundary value problems for the Laplace equation. SIAM J Numer Anal 31(5):1265–1288

    MathSciNet  MATH  Google Scholar 

  4. Babuska I, Anderson B, Guo B, Melenk JM, Oh HS (1996) Finite element method for solving problems with singular solutions. J Comp Appl Math 74:51–70

    Article  MathSciNet  MATH  Google Scholar 

  5. Dey S, O’Bara RM, Shephard MS (2001) Towards curvilinear meshing in 3D: the case of quadratic simplices. CAD Comput Aided Des 33(3):199–209

    Article  Google Scholar 

  6. Dey S, Shephard MS, Flaherty JE (1997) Geometry representation issues associated with p-version finite element computations. Comput Methods Appl Mech Eng 150(1–4):39–55

    Google Scholar 

  7. Dorr MR (1986) The approximation of solutions of elliptic boundary-value problems via the p-version of the finite element method. SIAM J Numer Anal 23(1):58–77

    MathSciNet  MATH  Google Scholar 

  8. Farin GE (1993) Curves and surfaces for computer aided geometric design: a practical guide, 3rd edn. Academic Press, Boston

    MATH  Google Scholar 

  9. Farouki RT, Rajan VT (1988) Algorithms for polynomials in Bernstein. Comput Aided Geom Des 5:1–26

    Article  MathSciNet  MATH  Google Scholar 

  10. Garimella R, Shephard MS (2000) Boundary layer mesh generation for viscous flow simulations in complex geometric domains. Int J Numer Methods Eng 49(1–2):193–218

    Google Scholar 

  11. Harber R, Shephard MS, Abel JF, Gallagher RH, Greenberg DP (1981) A general two-dimensional, graphical finite element preprocessor utilizing discrete transfinite mappings. Int J Numer Methods Eng 17:1015–1044

    Google Scholar 

  12. Li X, Shephard MS, Beall MW (2003) 3-D anisotropic mesh adaptation by mesh modifications. Comput Methods Appl Mech Eng (submitted)

  13. Luo XJ, Shephard MS, Remacle JF, O’Bara RM, Beall MW, Szabo BA, Actis R (2002) p-version mesh generation issues. In: Proceedings of the 11th international meshing roundtable, Ithaca, New York, September 2002. Sandia National Laboratories, pp 343–354

  14. Sherwin SJ, Peiro J (2002) Mesh generation in curvilinear domains using high order elements. Int J Numer Methods Eng 53:207–223

    Article  MATH  Google Scholar 

  15. Szabo BA (1986) Mesh design for the p-version of the finite element method. Comput Methods Appl Mech Eng 55:181–197

    Article  MATH  Google Scholar 

  16. Szabo BA, Babuska I (1991) Finite element analysis. Wiley, New York

Download references


This work was supported by the National Science Foundation through SBIR grant number DMI-0132742.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Xiao-Juan Luo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Luo, XJ., Shephard, M.S., O’Bara, R.M. et al. Automatic p-version mesh generation for curved domains. Engineering with Computers 20, 273–285 (2004).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • p-version method
  • Curved meshes
  • Graded meshes