Skip to main content
Log in

Bivariate spline interpolation with optimal approximation order

  • Published:
Constructive Approximation Aims and scope

Abstract

Let Δ be a triangulation of some polygonal domain Ω ⊂ R2 and let S rq (Δ) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to Δ. We develop the first Hermite-type interpolation scheme for S r q (Δ), q ≥ 3r + 2, whose approximation error is bounded above by Kh q +1, where h is the maximal diameter of the triangles in Δ, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and near-singular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of S r q (Δ). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [7] and [18].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Adam (1995): Bivariate spline-interpolation auf crosscut-partitionen. Dissertation, Mannheim.

  2. C. de Boor, K. Höllig (1983): Bivariate box splines and smooth pp functions on a three direction mesh. J. Comput. Appl. Math., 9:13–28.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. de Boor, K. Höllig (1988): Approximation power of smooth bivariate pp functions. Math. Z., 197:343–363.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. de Boor, R.-Q. Jia (1993): A sharp upper bound on the approximation order of smooth bivariate pp functions. J. Approx. Theory, 72:24–33.

    Article  MATH  MathSciNet  Google Scholar 

  5. J. M. Carnicer, J. M. Peña (1994): Least supported bases and local linear independence. Numer. Math., 67:289–301.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. K. Chui, T. X. He (1987): On location of sample points in C l quadratic bivariate spline interpolation. In: Numerical Methods of Approximation Theory (L. Collatz, G. Meinardus, G. Nürnberger, eds.). ISNM 81. Basel: Birkhäuser, pp. 30–43.

    Google Scholar 

  7. C. K. Chui, D. Hong, R.-Q. Jia (1995): Stability of optimal order approximation by bivariate splines over arbitrary triangulations. Trans. Amer. Math. Soc., 347:3301–3318.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. K. Chui, M. J. Lai (1990): On bivariate super vertex spline. Constr. Approx., 6:399–419.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. G. Ciarlet (1978): The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland.

    MATH  Google Scholar 

  10. C. Coatmélec (1966): Approximation et interpolation des fonctions différentiables de plusieurs variables. Ann. Sci. Ecole Norm. Sup. (3), 83:271–341.

    MATH  Google Scholar 

  11. O. Davydov (1998): Locally linearly independent basis for C1 bivariate splines of degree q ≥ 5. In: Mathematical Methods for Curves and Surfaces II (M. Daehlen, T. Lyche, L. L. Schumaker, eds.). Nashville, TN: Vanderbilt University Press, pp. 71–78.

    Google Scholar 

  12. O. Davydov, G. Nürnberger, F. Zeilfelder (1998): Approximation order of bivariate spline interpolation for arbitrary smoothness. J. Comput. Appl. Math., 90:117–134.

    Article  MATH  MathSciNet  Google Scholar 

  13. O. Davydov, M. Sommer, H. Strauss (1997): Locally linearly independent systems and almost interpolation. In: Multivariate Approximation and Splines (G. Nürnberger, J. W. Schmidt, G. Walz, eds.). ISNM. Basel: Birkhäuser, pp. 59–72.

    Google Scholar 

  14. O. Davydov, M. Sommer, H. Strauss (1999): On almost interpolation and locally linearly independent bases. East J. Approx., 5:67–88.

    MATH  MathSciNet  Google Scholar 

  15. D. Hong (1991): Spaces of bivariate spline functions over triangulation. Approx. Theory Appl., 7:56–75.

    MATH  Google Scholar 

  16. A. Kh. Ibrahim, L. L. Schumaker (1991): Super spline spaces of smoothness r and degree d ≥ 3r + 2. Constr. Approx., 7:401–423.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Jeeawock-Zedek (1992): Interpolation scheme by C1 cubic splines on a non uniform type-2 triangulation of a rectangular domain. C. R. Acad. Sci. Ser. I Math., 314:413–418.

    MATH  MathSciNet  Google Scholar 

  18. M. J. Lai, L. L. Schumaker (1998): On the approximation power of bivariate splines. Adv. in Comput. Math., 9:251–279.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. Morgan, R. Scott (1975): A nodal basis for C1 piecewise polynomials of degree n ≥ 5. Math. Comp., 29:736–740.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. Nürnberger (1989): Approximation by Spline Functions. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  21. G. Nürnberger (1996): Approximation order of bivariate spline interpolation. J. Approx. Theory, 78:117–136.

    Article  Google Scholar 

  22. G. Nürnberger, O. Davydov, G. Walz, F. Zeilfelder (1997): Interpolation by bivariate splines on crosscut partitions. In: Multivariate Approximation and Splines (G. Nürnberger, J. W. Schmidt, G. Walz, eds.). ISNM, Basel: Birkhäuser, pp. 189–203.

    Google Scholar 

  23. G. Nürnberger, Th. Riessinger (1992): Lagrange and Hermite interpolation by bivariate splines. Numer. Funct. Anal. Optim., 13:75–96.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Nürnberger, Th. Riessinger (1995): Bivariate spline interpolation at grid points. Numer. Math., 71:91–119.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Nürnberger, G. Walz (1998): Error analysis in interpolation by bivariate C1-splines. IMA J. Numer. Anal., 18:485–507.

    Article  MATH  MathSciNet  Google Scholar 

  26. L. L. Schumaker (1989): On super splines and finite elements. SIAM J. Numer. Anal., 26:997–1005.

    Article  MATH  MathSciNet  Google Scholar 

  27. Z. Sha (1985): On interpolation by S 12 2m,n ). Approx. Theory Appl., 1:71–82.

    MATH  MathSciNet  Google Scholar 

  28. Z. Sha (1985): On interpolation by S 13 2m,n ). Approx. Theory Appl., 1:1–18.

    MATH  MathSciNet  Google Scholar 

  29. G. Strang, G. J. Fix (1973): An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  30. A. Zeníšek (1970): Interpolation polynomials on the triangle. Numer. Math., 15:283–296.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. N. T. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davydov, O., Nürnberger, G. & Zeilfelder, F. Bivariate spline interpolation with optimal approximation order. Constr. Approx 17, 181–208 (2001). https://doi.org/10.1007/s003650010034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003650010034

AMS classification

Key words and phrases

Navigation