Skip to main content
Log in

Multivariate Generalized Hermite Subdivision Schemes

  • Published:
Constructive Approximation Aims and scope

Abstract

Due to properties such as interpolation, smoothness, and spline connections, Hermite subdivision schemes employ fast iterative algorithms for geometrically modeling curves/surfaces in CAGD and for building Hermite wavelets in numerical PDEs. In this paper, we introduce a notion of generalized Hermite (dyadic) subdivision schemes and then we characterize their convergence, smoothness and underlying matrix masks with or without interpolation properties. We also introduce the notion of linear-phase moments for achieving the polynomial-interpolation property. For any given integer \(m\in \mathbb {N}\), we constructively prove that there always exist convergent smooth generalized Hermite subdivision schemes with linear-phase moments such that their basis vector functions are spline functions in \(\mathscr {C}^{m}(\mathbb {R}^d)\) and have linearly independent integer shifts. As by-products, our results resolve convergence, smoothness, and existence of Lagrange, Hermite, or Birkhoff subdivision schemes. Even in dimension one our results significantly generalize and extend many known results on extensively studied univariate Hermite subdivision schemes. To illustrate the theoretical results in this paper, we provide examples of convergent generalized Hermite subdivision schemes with symmetric matrix masks having short support and smooth basis vector functions with or without interpolation property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Cavaretta, A., Dahmen, W., Micchelli, C.: Stationary subdivision. Am. Math. Soc. 93, 1–186 (1991)

    MathSciNet  MATH  Google Scholar 

  2. Charina, M., Conti, C., Sauer, T.: Regularity of multivariate vector subdivision schemes. Numer. Algorithms 39, 97–113 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Conti, C., Hüning, S.: An algebraic approach to polynomial reproduction of Hermite subdivision schemes. J. Comput. Appl. Math. 349, 302–315 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Conti, C., Merrien, J.-L., Romani, L.: Dual Hermite subdivision schemes of de Rham-type. BIT 54, 955–977 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Conti, C., Cotronei, M., Sauer, T.: Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42, 1055–1079 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Cotronei, M., Moosmüller, C., Sauer, T., Sissouno, N.: Level-dependent interpolatory Hermite subdivision schemes and wavelets. Constr. Approx. 50, 341–366 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer. 6, 55–228 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Dahmen, W., Han, B., Jia, R.-Q., Kunoth, A.: Biorthogonal multiwavelets on the interval: cubic Hermite splines. Constr. Approx. 16, 221–259 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Dubuc, S., Han, B., Merrien, J.-L., Mo, Q.: Dyadic \(C^2\) Hermite interpolation on a square mesh. Comput. Aided Geom. Des. 22, 727–752 (2005)

    MATH  Google Scholar 

  10. Dubuc, S., Merrien, J.-L.: Convergent vector and Hermite subdivision schemes. Constr. Approx. 23, 1–22 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Dubuc, S., Merrien, J.-L.: Hermite subdivision schemes and Taylor polynomials. Constr. Approx. 29, 219–245 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Dyn, N., Levin, D.: Analysis of Hermite-Type Subdivision Schemes. Approximation Theory VIII, Vol. 2, 117–124. Series in Approximations and Decompositions, vol. 6. World Scientific Publishing, River Edge (1995)

  13. Dyn, N., Levin, D.: Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Han, B.: Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110, 18–53 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Han, B.: Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124, 44–88 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Han, B.: Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl. 24, 693–714 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Han, B.: Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24, 375–403 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Han, B.: Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26, 14–42 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Han, B.: Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Adv. Comput. Math. 32, 209–237 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Han, B.: The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Math. Comput. 79, 917–951 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Han, B.: Properties of discrete framelet transforms. Math. Model. Nat. Phenom. 8, 18–47 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Han, B.: Framelets and Wavelets: Algorithms, Analysis, and Applications. Applied and Numerical Harmonic Analysis, p. xxxiii + 724. Birkhäuser, Cham (2017)

    MATH  Google Scholar 

  23. Han, B.: Analysis and convergence of Hermite subdivision schemes. Found. Comput. Math. 23, 165–218 (2023)

  24. Han, B., Kwon, S., Zhuang, X.: Generalized interpolating refinable function vectors. J. Comput. Appl. Math. 227, 254–270 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Han, B., Jia, R.-Q.: Optimal \(C^2\) two-dimensional interpolatory ternary subdivision schemes with two-ring stencils. Math. Comput. 75, 1287–1308 (2006)

    MATH  Google Scholar 

  26. Han, B., Jia, R.-Q.: Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29, 1177–1199 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Han, B., Michelle, M.: Wavelets on intervals derived from arbitrary compactly supported biorthogonal multiwavelets. Appl. Comput. Harmon. Anal. 53, 270–331 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Han, B., Mo, Q.: Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6, 689–718 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Han, B., Yu, T.: Face-based Hermite subdivision schemes. J. Concr. Appl. Math. 4, 435–450 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Han, B., Yu, T., Piper, B.: Multivariate refinable Hermite interpolant. Math. Comput. 73, 1913–1935 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Han, B., Yu, T., Xue, Y.: Noninterpolatory Hermite subdivision schemes. Math. Comput. 74, 1345–1367 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Han, B., Zhuang, X.: Analysis and construction of multivariate interpolating refinable function vectors. Acta Appl. Math. 107, 143–171 (2009)

    MathSciNet  MATH  Google Scholar 

  33. Jeong, B., Yoon, J.: Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349, 452–469 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Jia, R.-Q., Jiang, Q.: Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24, 1071–1109 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Jia, R.-Q., Micchelli, C.A.: Using the Refinement Equations for the Construction of Pre-wavelets. II. Powers of two. Curves and Surfaces, pp. 209–246. Academic Press, Boston (1990)

    Google Scholar 

  36. Jia, R.-Q., Riemenschneider, S., Zhou, D.-X.: Vector subdivision schemes and multiple wavelets. Math. Comput. 67, 1533–1563 (1998)

    MathSciNet  MATH  Google Scholar 

  37. Jüttler, B., Schwanecke, U.: Analysis and design of Hermite subdivision schemes. Vis. Comput. 18, 326–342 (2002)

    Google Scholar 

  38. Merrien, J.-L.: A family of Hermite interpolants by bisection algorithms. Numer. Algorithms 2, 187–200 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Merrien, J.-L., Sauer, T.: A generalized Taylor factorization for Hermite subdivision schemes. J. Comput. Appl. Math. 236, 565–574 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Merrien, J.-L., Sauer, T.: Extended Hermite subdivision schemes. J. Comput. Appl. Math. 317, 343–361 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Merrien, J.-L., Sauer, T.: Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142, 167–203 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Micchelli, C., Sauer, T.: On vector subdivision. Math. Z. 229, 621–674 (1998)

    MathSciNet  MATH  Google Scholar 

  43. Moosmüller, C., Dyn, N.: Increasing the smoothness of vector and Hermite subdivision schemes. IMA J. Numer. Anal. 39, 579–606 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Moosmüller, C., Hüning, S., Conti, C.: Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA J. Numer. Anal. 41, 2936–2961 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Zhou, D.-X.: Multiple refinable Hermite interpolants. J. Approx. Theory 102, 46–71 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Han.

Additional information

Communicated by Peter Oswald

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) under Grant RGPIN-2019-04276.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B. Multivariate Generalized Hermite Subdivision Schemes. Constr Approx 58, 407–462 (2023). https://doi.org/10.1007/s00365-023-09619-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-023-09619-3

Keywords

Mathematics Subject Classification

Navigation