Skip to main content
Log in

Constructive Approximation on Graded Meshes for the Integral Fractional Laplacian

  • Published:
Constructive Approximation Aims and scope

Abstract

We consider the homogeneous Dirichlet problem for the integral fractional Laplacian \((-\Delta )^s\). We prove optimal Sobolev regularity estimates in Lipschitz domains provided the solution is \(C^s\) up to the boundary. We present the construction of graded bisection meshes by a greedy algorithm and derive quasi-optimal convergence rates for approximations to the solution of such a problem by continuous piecewise linear functions. The nonlinear Sobolev scale dictates the relation between regularity and approximability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abatangelo, N., Ros-Oton, X.: Obstacle problems for integro-differential operators: higher regularity of free boundaries. Adv. Math. 360, 1–61 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acosta, G., Bersetche, F., Borthagaray, J.: A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian. Comput. Math. Appl. 74(4), 784–816 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acosta, G., Borthagaray, J.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ainsworth, M., Glusa, C.: Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327, 4–35 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28(4), 391–416 (2002). (Dedicated to the memory of Vasil Popov on the occasion of his 60th birthday)

    MathSciNet  MATH  Google Scholar 

  7. Bonito, A., Borthagaray, J., Nochetto, R., Otárola, E., Salgado, A.: Numerical methods for fractional diffusion. Comput. Vis. Sci. 19(5), 19–46 (2018)

    Article  MathSciNet  Google Scholar 

  8. Borthagaray, J., Leykekhman, D., Nochetto, R.: Local energy estimates for the fractional Laplacian. SIAM J. Numer. Anal. 59(4), 1918–1947 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borthagaray, J., Nochetto, R., Salgado, A.: Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian. Math. Models Methods Appl. Sci. 29(14), 2679–2717 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial Differential Equations, pp. 439–455 (2001)

  11. Carbery, A., Maz’ya, V., Mitrea, M., Rule, D.: The integrability of negative powers of the solution of the Saint Venant problem. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(2), 465–531 (2014)

  12. Ciarlet, P., Jr.: Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21(3), 173–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. D’Elia, M., Du, Q., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.: Numerical methods for nonlocal and fractional models. Acta Numer. 29, 1–124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faermann, B.: Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods. I. The two-dimensional case. IMA J. Numer. Anal. 20(2), 203–234 (2000)

  15. Faermann, B.: Localization of the Aronszajn–Slobodeckij norm and application to adaptive boundary element methods. II. The three-dimensional case. Numer. Math. 92(3), 467–499 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Funken, S., Praetorius, D., Wissgott, P.: Efficient implementation of adaptive P1-FEM in Matlab. Comput. Methods Appl. Math. 11(4), 460–490 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gimperlein, H., Stephan, E., Stocek, J.: Corner singularities for the fractional Laplacian and finite element approximation. Preprint available at http://www.macs.hw.ac.uk/~hg94/corners.pdf (2019)

  18. Gimperlein, H., Stocek, J.: Space-time adaptive finite elements for nonlocal parabolic variational inequalities. Comput. Methods Appl. Mech. Eng. 352, 137–171 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24. Pitman (Advanced Publishing Program), Boston (1985)

    MATH  Google Scholar 

  20. Grubb, G.: Fractional Laplacians on domains, a development of Hörmander’s theory of \(\mu \)-transmission pseudodifferential operators. Adv. Math. 268, 478–528 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B., Babuška, I.: Regularity of the solutions for elliptic problems on nonsmooth domains in \(\textbf{R} ^3\). II. Regularity in neighbourhoods of edges. Proc. R. Soc. Edinb. Sect. A 127(3), 517–545 (1997)

    Article  MATH  Google Scholar 

  22. Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer (2012)

    MATH  Google Scholar 

  23. Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., et al.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mirebeau, J.-M., Cohen, A.: Anisotropic smoothness classes: from finite element approximation to image models. J. Math. Imaging Vis. 38(1), 52–69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mirebeau, J.-M., Cohen, A.: Greedy bisection generates optimally adapted triangulations. Math. Comput. 81(278), 811–837 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)

  28. Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Multiscale and Adaptivity: Modeling, Numerics and Applications, Lecture Notes in Mathematics, vol. 2040, pp. 125–225. Springer, Heidelberg (2012)

  29. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schötzau, D., Schwab, C., Wihler, T.P.: \(hp\)-DGFEM for second order elliptic problems in polyhedra II: exponential convergence. SIAM J. Numer. Anal. 51(4), 2005–2035 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Borthagaray.

Additional information

Communicated by Wofgang Dahmen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

JPB has been supported in part by Fondo Vaz Ferreira Grant 2019-068. RHN has been supported in part by NSF Grant DMS-1908267.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borthagaray, J.P., Nochetto, R.H. Constructive Approximation on Graded Meshes for the Integral Fractional Laplacian. Constr Approx 57, 463–487 (2023). https://doi.org/10.1007/s00365-023-09617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-023-09617-5

Keywords

Navigation