Skip to main content
Log in

The Complete Asymptotic Evaluation for Mellin Convolution Operators

  • Published:
Constructive Approximation Aims and scope

Abstract

For a set of kernels \(K_{w}:\left( 0,\infty \right) \rightarrow \mathbb {R}\) ( \(w>0\)) which satisfies the condition \(\int _{0}^{\infty }K_{w}\left( t\right) \frac{\mathrm{d}t}{t}=1\) the singular integral of Mellin convolution type is defined by

$$\begin{aligned} T_{w}\left( f\right) \left( s\right) =\int _{0}^{\infty }K_{w}\left( t\right) f\left( st\right) \frac{\mathrm{d}t}{t},s>0 \end{aligned}$$

where f belongs to the domain of \(T_{w}\). In the paper we find the complete asymptotic evaluation for the above operator. As applications we find the complete asymptotic evaluation for the Mellin–Gauss–Weierstrass operator, for the Mellin–Abel operator, for the Hadamard type operator, for the moment operator and for the modified Mellin–Abel–Poisson operator and a new type of the Mellin convolution operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and its Application, vol. 17. de Gruyter Studies in Mathematics, Berlin, New York (1994)

    Book  MATH  Google Scholar 

  2. Anastassiou, G.A., Mezei, R.A.: A Voronovskaja type theorem for Poisson-Cauchy type singular operators. J. Math. Anal. Appl. 366(2), 525–529 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbieri, F.: Approssimazione Mediante Nuclei Momento. Atti Semin. Mat. Fis. Univ. Modena 32, 308–328 (1983)

    MathSciNet  Google Scholar 

  4. Bardaro, C., Mantellini, I.: Voronovskaya-type estimate for mellin convolution operators. Results Math. 50(1–2), 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bardaro, C., Mantellini, I.: A quantitative Voronovskaya formula for Mellin convolution operators. Mediterr. J. Math. 7(4), 483–501 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bardaro, C., Mantellini, I.: Approximation properties for linear combinations of moment type operators. Comput. Math. Appl. 62(5), 2304–2313 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Bardaro, C., Mantellini, I.: A note on the Voronovskaja theorem for Mellin-Fejer convolution operators. Appl. Math. Lett. 24(12), 2064–2067 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bardaro, C., Mantellini, I.: On Voronovskaja formula for linear combinations of Mellin-Gauss-Weierstrass operators. Appl. Math. Comput. 218(20), 10171–10179 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Bardaro, C., Mantellini, I.: On the iterates of Mellin-Fejer convolution operators. Acta Appl. Math. 121(1), 213–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bardaro, C., Mantellini, I.: On Mellin convolution operators: a direct approach to the asymptotic formulae. Integr. Transf. Spec. Funct. 25(3), 182–195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bardaro, C., Butzer, P.L., Mantellini, I.: The foundations of fractional calculus in the Mellin transform setting with applications. J. Fourier Anal. Appl. 21(5), 961–1017 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Butzer, P.L., Jansche, S.: A direct approach to the Mellin transform. J. Fourier Anal. Appl. 3, 325–375 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Butzer, P.L., Jansche, S.: Mellin transform, the Mellin–Poisson summation formula and the exponential sampling theorem, Atti Sem. Mat. Fis. Univ. Modena, Suppl. 46 (a special volume dedicated to Professor Calogero Vinti), pp. 99–122 (1998)

  14. Butzer, P.L., Kilbas, A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 269(1), 1–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Butzer, P.L., Kilbas, A., Trujillo, J.J.: Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl. 269(2), 387–400 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Butzer, P.L., Kilbas, A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J. Math. Anal. Appl. 270(1), 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation I. Academic Press, New York, London (1971)

    Book  MATH  Google Scholar 

  18. Geenens, G.: Mellin-Meijer kernel density estimation on \(\mathbb{R}_{+}\). Ann. Inst. Stat. Math. 73(5), 953–977 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolbe, W., Nessel, R.J.: Saturation theory in connection with Mellin transform methods. SIAM J. Math. Anal. 3, 246–262 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Korovkin, P.P.: On convergence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 90, 961–964 (1953)

    MathSciNet  Google Scholar 

  21. Korovkin, P.P.: Linear Operators and Approximation Theory, Fitzmatgiz, Moscow, 1959 (Russian). Hindustan Publishing Corp, Delhi (1960)

    Google Scholar 

  22. Mantellini, I.: On the asymptotic behaviour of linear combinations of Mellin-Picard type operators. Math. Nachr. 286(17–18), 1820–1832 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Popa, D.: Asymptotic evaluations for some sequences of positive linear operators. Constr. Approx. 50(2), 293–321 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Popa, D.: Approximation of the continuous functions on \(l_{p}\)-spaces with \(p\)an even natural number. Positivity 24(4), 1135–1149 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Popa, D.: The Korovkin parabola envelopes method and Voronovskaja-type results. Mediterr. J. Math. 18(4), 150 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the two reviewers for their very careful reading of the manuscript and their many valuable and constructive comments that have improved the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Popa.

Additional information

Communicated by Wolfgang Dahmen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popa, D. The Complete Asymptotic Evaluation for Mellin Convolution Operators. Constr Approx 58, 253–270 (2023). https://doi.org/10.1007/s00365-022-09584-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-022-09584-3

Keywords

Mathematics Subject Classification

Navigation