Aubel, C., Bölcskei, H.: Deterministic performance analysis of subspace methods for cisoid parameter estimation. In: 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1551–1555. IEEE (2016)
Azaïs, J.-M., De Castro, Y., Gamboa, F.: Spike detection from inaccurate samplings. Appl. Comput. Harmon. Anal. 38(2), 177–195 (2015)
MathSciNet
Article
Google Scholar
Benedetto, J.J., Li, W.: Super-resolution by means of beurling minimal extrapolation. Appl. Comput. Harmon. Anal. 48(1), 218–241 (2020)
MathSciNet
Article
Google Scholar
Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Second-order sigma-delta (\(\Sigma \Delta \)) quantization of finite frame expansions. Appl. Comput. Harmon. Anal. 20(1), 126–148 (2006)
MathSciNet
Article
Google Scholar
Benedetto, J.J., Powell, A.M., Yilmaz, O.: Sigma-delta (\(\Sigma \Delta \)) quantization and finite frames. IEEE Trans. Inf. Theory 52(5), 1990–2005 (2006)
MathSciNet
Article
Google Scholar
Blum, J., Lammers, M., Powell, A.M., Yılmaz, Ö.: Sobolev duals in frame theory and sigma-delta quantization. J. Fourier Anal. Appl. 16(3), 365–381 (2010)
MathSciNet
Article
Google Scholar
Candès, E.J., Fernandez-Granda, C.: Super-resolution from noisy data. J. Fourier Anal. Appl. 19(6), 1229–1254 (2013)
MathSciNet
Article
Google Scholar
Candès, E.J., Fernandez-Granda, C.: Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)
MathSciNet
Article
Google Scholar
Chou, E.: Beta-duals of frames and applications to problems in quantization. PhD thesis, New York University (2013)
Chou, E., Güntürk, C.S.: Distributed noise-shaping quantization: I. Beta duals of finite frames and near-optimal quantization of random measurements. Constr. Approx. 44(1), 1–22 (2016)
MathSciNet
Article
Google Scholar
Chou, E., Güntürk, C.S.: Distributed noise-shaping quantization: II. Classical frames. In: Excursions in Harmonic Analysis, vol. 5, pp. 179–198. Springer (2017)
Chou, E., Güntürk, C.S., Krahmer, F., Saab, R., Yılmaz, Ö.: Noise-shaping quantization methods for frame-based and compressive sampling systems. In: Sampling Theory, a Renaissance, pp. 157–184. Springer (2015)
Daubechies, I., DeVore, R.: Approximating a bandlimited function using very coarsely quantized data: a family of stable sigma-delta modulators of arbitrary order. Ann. Math. 158, 679–710 (2003)
MathSciNet
Article
Google Scholar
Deift, P., Krahmer, F., Güntürk, C.S.: An optimal family of exponentially accurate one-bit sigma-delta quantization schemes. Commun. Pure Appl. Math. 64(7), 883–919 (2011)
MathSciNet
Article
Google Scholar
Demanet, L., Nguyen, N.: The recoverability limit for superresolution via sparsity. arXiv preprint arXiv:1502.01385 (2015)
Donoho, D.L.: Superresolution via sparsity constraints. SIAM J. Math. Anal. 23(5), 1309–1331 (1992)
MathSciNet
Article
Google Scholar
Duval, V., Peyré, G.: Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15(5), 1315–1355 (2015)
MathSciNet
Article
Google Scholar
Fannjiang, A.C.: Compressive spectral estimation with single-snapshot ESPRIT: Stability and resolution. arXiv preprint arXiv:1607.01827 (2016)
Fernandez-Granda, C.: Support detection in super-resolution. In: Proceedings of the 10th International Conference on Sampling Theory and Applications, pp. 145–148 (2013)
Fernandez-Granda, C.: Super-resolution of point sources via convex programming. In: Information and Inference, pp. 251–303 (2016)
Güntürk, C.S.: One-bit sigma-delta quantization with exponential accuracy. Commun. Pure Appl. Math. 56(11), 1608–1630 (2003)
MathSciNet
Article
Google Scholar
Güntürk, C.S.: Approximating a bandlimited function using very coarsely quantized data: improved error estimates in sigma-delta modulation. J. Am. Math. Soc. 17(1), 229–242 (2004)
MathSciNet
Article
Google Scholar
Güntürk, C.S., Lammers, M., Powell, A.M., Saab, R., Yılmaz, Ö.: Sobolev duals for random frames and \(\Sigma \Delta \) quantization of compressed sensing measurements. Found. Comput. Math. 13(1), 1–36 (2013)
MathSciNet
Article
Google Scholar
Güntürk, C.S., Li, W.: High-performance quantization for spectral super-resolution. In: Proceedings to Sampling Theory and Applications (2019)
Huynh, T., Saab, R.: Fast binary embeddings and quantized compressed sensing with structured matrices. Commun. Pure Appl. Math. 73(1), 110–149 (2020)
MathSciNet
Article
Google Scholar
Li, W.: Elementary \({L}^\infty \) error estimates for super-resolution de-noising. arXiv preprint arXiv:1702.03021 (2017)
Li, W., Liao, W.: Conditioning of restricted Fourier matrices and super-resolution of MUSIC. In: Proceedings of Sampling Theory and Applications (2019)
Li, W., Liao, W.: Stable super-resolution limit and smallest singular value of restricted Fourier matrices. Appl. Comput. Harmon. Anal. 51, 118–156 (2021)
MathSciNet
Article
Google Scholar
Li, W., Liao, W., Fannjiang, A.: Super-resolution limit of the esprit algorithm. IEEE Trans. Inf. Theory 66(7), 4593–4608 (2020)
MathSciNet
Article
Google Scholar
Liao, W., Fannjiang, A.: MUSIC for single-snapshot spectral estimation: stability and super-resolution. Appl. Comput. Harmon. Anal. 40(1), 33–67 (2016)
MathSciNet
Article
Google Scholar
Moitra, A.: Super-resolution, extremal functions and the condition number of Vandermonde matrices. In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing (2015)
Saab, R., Wang, R., Yılmaz, Ö.: Quantization of compressive samples with stable and robust recovery. Appl. Comput. Harmon. Anal. 44(1), 123–143 (2018)
MathSciNet
Article
Google Scholar
Wang, R.: Sigma delta quantization with harmonic frames and partial Fourier ensembles. J. Fourier Anal. Appl. 24(6), 1460–1490 (2018)
MathSciNet
Article
Google Scholar