Skip to main content
Log in

Iterated Function Systems Enriched with Symmetry

  • Published:
Constructive Approximation Aims and scope

Abstract

An iterated function system (IFS) can be enriched with an isometry in such a way that the resulting fractal set has prescribed symmetry. If the original system is contractive, then its associated self-similar set is an attractor. On the other hand, the enriched system is no longer contractive and therefore does not have an attractor. However, it posses a self-similar set which, under certain conditions, behaves like an attractor. We give a rigorous procedure which relates a given enriched IFS to a contractive one. Further, we link this procedure to the Lasota–Myjak theory of semiattractors, and so via invariant measures to probabilistic iterated function systems. The chaos game algorithm for enriched IFSs is discussed. We illustrate our main results with several examples which are related to classical fractals such as the Sierpiński triangle and the Barnsley fern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Andres, J., Fišer, J., Gabor, G., Leśniak, K.: Multivalued fractals. Chaos Solitons Fractals 24(3), 665–700 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrica, D., Bulgarean, V.: Some remarks on the group of isometries of a metric space. [In:] P.M. Pardalos (ed.) et al.: Nonlinear analysis. Stability, approximation, and inequalities. Springer, New York, pp. 57–64 (2012)

  3. Bach, E.: De Bruijn sequences. The Sage Repository (2011). http://git.sagemath.org/sage.git/tree/src/sage/combinat/debruijn_sequence.pyx

  4. Barnsley, M.F.: Fractals Everywhere. Dover, Mineola (2012)

    MATH  Google Scholar 

  5. Barnsley, M.F., Elton, J.H.: A new class of Markov processes for image encoding. Adv. Appl. Prob. 20, 14–32 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barnsley, M., Vince, A.: Developments in fractal geometry. Bull. Math. Sci. 3(2), 299–348 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrientos, P.G., Fitzsimmons, M., Ghane, F.H., Malicet, D., Sarizadeh, A.: Addendum and corrigendum to: “On the chaos game of iterated function systems“. Topol Methods Nonlinear Anal. 55(2), 601–616 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Barrientos, P.G., Ghane, F.H., Malicet, D., Sarizadeh, A.: On the chaos game of iterated function systems. Topol. Methods Nonlinear Anal. 49(1), 105–132 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht (1993)

    Book  MATH  Google Scholar 

  10. Calude, C.S., Staiger, L.: Generalisations of disjunctive sequences. MLQ Math. Log. Quart. 51, 120–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Díaz, L.J., Matias, E.: Non-hyperbolic iterated function systems: semifractals and the chaos game. Fundam. Math. 250(1), 21–39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Draves, S., Reckase, E.: The fractal flame algorithm. flam3.com, 1–41 (2008)

  13. McFarlane, I., Hoggar, S.G.: Optimal drivers for “Random“ Iteration Algorithm. Comput. J. 37, 629–640 (1994)

    Article  Google Scholar 

  14. Field, M., Golubitsky, M.: Symmetry in Chaos: A Search for Pattern in Mathematics, Art and Nature, 2nd edn. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  15. Fitzsimmons, M., Kunze, H.: Small and minimal attractors of an IFS. Commun. Nonlinear Sci. Numer. Simul. 85,(2020). (article id 105227)

  16. Fleming, R.J., Jamison, J.E.: Isometries on Banach Spaces: Function Spaces. Chapman and Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  17. Gdawiec, K.: Pseudoinversion fractals. Lecture Notes Compu. Sci. 9972, 29–36 (2016)

    Article  Google Scholar 

  18. McGehee, R.: Attractors for closed relations on compact Hausdorff spaces. Indiana Univ. Math. J. 41, 1165–1209 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  20. Hata, M.: On the structure of self-similar sets. Japan J. Appl. Math. 2, 381–414 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Iosifescu, M.: Iterated function systems. A critical survey. Math. Rep. (Bucur.) 11, 181–229 (2009)

    MATH  Google Scholar 

  22. Jadczyk, A.: Quantum Fractals: From Heisenberg’s Uncertainty to Barnsley’s Fractality. World Scientific, Hackensack (2014)

  23. Jarosz, K.: Any Banach space has an equivalent norm with trivial isometries. Israel J. Math. 64(1), 49–56 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kieninger, B.: Iterated Function Systems on Compact Hausdorff Spaces. Shaker-Verlag, Aachen (2002)

    MATH  Google Scholar 

  25. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.: Fractal-based Methods in Analysis. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  26. Lasota, A., Myjak, J.: Semifractals. Bull. Pol. Acad. Sci. Math. 44(1), 5–21 (1996)

    MathSciNet  MATH  Google Scholar 

  27. Lasota, A., Myjak, J.: Attractors of multifunctions. Bull. Pol. Acad. Sci. Math. 48(3), 319–334 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Leśniak, K.: Random iteration for infinite nonexpansive iterated function systems. Chaos 25,(2015). (article id 083117)

  29. Leśniak, K., Snigireva, N.: Chaos game simulation over a prescribed driver in Maxima CAS. Rumak—Repository of the Nicolaus Copernicus University in Toruń, 2020-06-16, http://repozytorium.umk.pl/handle/item/6317

  30. Leśniak, K., Snigireva, N., Strobin, F.: Weakly contractive iterated function systems and beyond: A manual. J. Differ. Equ. Appl. 26(8), 1114–1173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Łoziński, A., Życzkowski, K., Słomczyński, W.: Quantum iterated function systems. Phys. Rev. E 68, no. 4, article id 046110, pp. 9 (2003)

  32. Massopust, P.: Interpolation and Approximation with Splines and Fractals. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  33. Mekhontsev, D.: An Algebraic Framework for Finding and Analyzing Self-affine Tiles and Fractals. PhD thesis. University of Greifswald, Greifswald, https://nbn-resolving.org/urn:nbn:de:gbv:9-opus-24794. (2019)

  34. Mounoud, P.: Metrics without isometries are generic. Monatsh. Math. 176, 603–606 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mumford, D., Series, C.: Indra’s Pearls. The Vision of Felix Klein. Cambridge University Press, Cambridge (2002)

  36. Myjak, J., Szarek, T.: Attractors of iterated function systems and Markov operators. Abstr. Appl. Anal. 2003(8), 479–502 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nikiel, S.: Iterated Function Systems for Real-Time Image Synthesis. Springer, London (2007)

    MATH  Google Scholar 

  38. Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  39. Reiter, C.: Fractals, Visualization, and J. 3rd edition. Lulu (2007)

  40. Schlicker, S., Dennis, K.: Sierpinski n-gons. Pi Mu Epsilon Journal 10(2), 81–89 (1995)

    MATH  Google Scholar 

  41. Stenflo, Ö.: A survey of average contractive iterated function systems. J. Differ. Equ. Appl. 18(8), 1355–1380 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Strobin, F.: Contractive iterated function systems enriched with nonexpansive maps. Result. Math. 76, 153 (2021). https://doi.org/10.1007/s00025-021-01451-0

  43. Vince, A.: Thresholds for one-parameter families of affine iterated function systems. Nonlinearity 33(12), 6541–6563 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Filip Strobin for fruitful discussions, and especially for pointing out to us that the results of our paper hold not only for proper spaces but for complete spaces as well. We also thank the unknown referees for their valuable comments which improved the presentation of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Snigireva.

Additional information

Communicated by Jeffery Geronimo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leśniak, K., Snigireva, N. Iterated Function Systems Enriched with Symmetry. Constr Approx 56, 555–575 (2022). https://doi.org/10.1007/s00365-021-09560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-021-09560-3

Keywords

Mathematics Subject Classification

Navigation