Skip to main content
Log in

Cubature Rules for Unitary Jacobi Ensembles

  • Published:
Constructive Approximation Aims and scope

Abstract

We present Chebyshev type cubature rules for the exact integration of rational symmetric functions with poles on prescribed coordinate hyperplanes. Here the integration is with respect to the densities of unitary Jacobi ensembles stemming from the Haar measures of the orthogonal and the compact symplectic Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andréief, M.C.: Note sur une relation entre les intégrales définies des produits des fonctions. Mém. Soc. Sci. Phys. Nat. Bordx. 3(2), 1–14 (1886)

    MATH  Google Scholar 

  2. Baik, J., Deift, P., Strahov, E.: Products and ratios of characteristic polynomials of random Hermitian matrices. J. Math. Phys. 44, 3657–3670 (2003)

    Article  MathSciNet  Google Scholar 

  3. Berens, H., Schmid, H.J., Xu, Y.: Multivariate Gaussian cubature formulae. Arch. Math. 64, 26–32 (1995)

    Article  MathSciNet  Google Scholar 

  4. Britanak, V., Yip, P.C., Rao, K.R.: Discrete Cosine and Sine Transforms. Fast Algorithms and Integer Approximations. Elsevier, Amsterdam (2007)

    Google Scholar 

  5. Brus, A., Hrivnák, J., Motlochová, L.: Discrete transforms and orthogonal polynomials of (anti)symmetric multivariate sine functions. Entropy 20(12), Paper No. 938 (2018)

  6. Bultheel, A., Cruz-Barroso, R., Deckers, K., González-Vera, P.: Rational Szegö quadratures associated with Chebyshev weight functions. Math. Comput. 78, 1031–1059 (2009)

    Article  Google Scholar 

  7. Cools, R.: Constructing cubature formulae: the science behind the art. Acta Numer. 6, 1–54 (1997)

    Article  MathSciNet  Google Scholar 

  8. Cools, R., Mysovskikh, I.P., Schmid, H.J.: Cubature formulae and orthogonal polynomials. J. Comput. Appl. Math. 127, 121–152 (2001)

    Article  MathSciNet  Google Scholar 

  9. Daruis, L., González-Vera, P., Jiménez Paiz, M.: Quadrature formulas associated with rational modifications of the Chebyshev weight functions. Comput. Math. Appl. 51, 419–430 (2006)

    Article  MathSciNet  Google Scholar 

  10. Deckers, K., Van Deun, J., Bultheel, A.: Rational Gauss–Chebyshev quadrature formulas for complex poles outside \( [-1,1]\). Math. Comput. 77, 967–983 (2008)

    Article  MathSciNet  Google Scholar 

  11. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, vol. 155, 2nd edn. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  12. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs Series, vol. 34. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  13. Forrester, P.J.: Meet Andréief, Bordeaux 1886, and Andreev, Kharkov 1882–1883. Random Matrices Theory Appl. 8(2), 1930001 (2019)

    Article  MathSciNet  Google Scholar 

  14. Gautschi, W.: A survey of Gauss–Christoffel quadrature formulae. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel: The Influence of his Work in Mathematics and Physical Sciences, pp. 72–147. Birkhäuser, Basel (1981)

    Chapter  Google Scholar 

  15. Hrivnák, J., Motlochová, L.: Discrete transforms and orthogonal polynomials of (anti)symmetric multivariate cosine functions. SIAM J. Numer. Anal. 52, 3021–3055 (2014)

    Article  MathSciNet  Google Scholar 

  16. Hrivnák, J., Motlochová, L., Patera, J.: Cubature formulas of multivariate polynomials arising from symmetric orbit functions. Symmetry 8(7), Art. 63 (2016)

  17. Li, H., Xu, Y.: Discrete Fourier analysis on fundamental domain and simplex of \(A_d\) lattice in \(d\)-variables. J. Fourier Anal. Appl. 16, 383–433 (2010)

    Article  MathSciNet  Google Scholar 

  18. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  19. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  20. Micchelli, C.A., Rivlin, T.J.: Numerical integration rules near Gaussian quadrature. Isr. J. Math. 16, 287–299 (1973)

    Article  MathSciNet  Google Scholar 

  21. Moody, R.V., Motlochová, L., Patera, J.: Gaussian cubature arising from hybrid characters of simple Lie groups. J. Fourier Anal. Appl. 20, 1257–1290 (2014)

    Article  MathSciNet  Google Scholar 

  22. Moody, R., Patera, J.: Cubature formulae for orthogonal polynomials in terms of elements of finite order of compact simple Lie groups. Adv. Appl. Math. 47, 509–535 (2011)

    Article  MathSciNet  Google Scholar 

  23. Procesi, C.: Lie Groups. An Approach Through Invariants and Representations. Universitext. Springer, New York (2007)

    MATH  Google Scholar 

  24. Simon, B.: Representations of Finite and Compact Groups. Graduate Studies in Mathematics, vol. 10. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  25. Sobolev, S.L.: Cubature Formulas and Modern Analysis. An Introduction. Gordon and Breach Science Publishers, Montreux (1992)

    MATH  Google Scholar 

  26. Sobolev, S.L., Vaskevich, V.L.: The Theory of Cubature Formulas. Mathematics and its Applications, vol. 415. Kluwer Academic Publishers Group, Dordrecht (1997)

    Book  Google Scholar 

  27. Strang, G.: The discrete cosine transform. SIAM Rev. 41, 135–147 (1999)

    Article  MathSciNet  Google Scholar 

  28. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall Series in Automatic Computation. Prentice-Hall Inc, Englewood Cliffs (1971)

    MATH  Google Scholar 

  29. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Colloquium Publications, vol. XXIII, 4th edn. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  30. Van Deun, J., Bultheel, A., González Vera, P.: On computing rational Gauss–Chebyshev quadrature formulas. Math. Comput. 75, 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  31. van Diejen, J.F., Emsiz, E.: Discrete Fourier transform associated with generalized Schur polynomials. Proc. Am. Math. Soc. 146, 3459–3472 (2018)

    Article  MathSciNet  Google Scholar 

  32. van Diejen, J.F., Emsiz, E.: Quadrature rules from finite orthogonality relations for Bernstein–Szegö polynomials. Proc. Am. Math. Soc. 146, 5333–5347 (2018)

    Article  Google Scholar 

  33. van Diejen, J.F., Emsiz, E.: Exact cubature rules for symmetric functions. Math. Comput. 88, 1229–1249 (2019)

    Article  MathSciNet  Google Scholar 

  34. Xu, Y.: A characterization of positive quadrature formulae. Math. Comput. 62, 703–718 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. van Diejen.

Additional information

Communicated by Yuan Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) Grant # 1170179.

Appendix A. The Cauchy–Binet–Andréief Formulas

Appendix A. The Cauchy–Binet–Andréief Formulas

Let \(f_1,\ldots f_n\) and \(g_1,\ldots ,g_n\) be functions in the Hilbert space \(L^2\bigl ( ]a,b[ , | \text {w}(x) | \text {d}x\bigr )\). Then Andréief’s integration formula states that [1]:

$$\begin{aligned}&\frac{1}{n!} \int _a^{b}\cdots \int _a^b \det \left[ f_j(x_k) \right] _{1\le j,k\le n} \det \left[ g_j(x_k)\right] _{1\le j,k\le n} \prod _{1\le j\le n} \text {w}(x_j)\, \text {d} x_1\cdots \text {d} x_n \nonumber \\&\qquad =\det \left[ \int _a^b f_j(x)g_k(x) \text {w}(x) \text {d}x \right] _{1\le j,k\le n} . \end{aligned}$$
(A.1)

A short and elementary verification of this identity is provided, e.g., in [2, Lemma 3.1]. A similar proof can be found in [13] together with a historical account of the formula. If we pass from functions on the interval to functions supported on the nodes \(x_0^{(m+n)}<\cdots <x_{m+n-1}^{(m+n)} \), and replace the integration measure \( \text {w}(x)\text {d}x\) by the discrete point measure on these nodes with weights \(\text {w}_0^{(m+n)},\ldots ,\text {w}_{m+n-1}^{(m+n)}\), then Andréief’s integration formula gives rise to the identity

$$\begin{aligned}&\frac{1}{n!}\sum _{\begin{array}{c} 0\le l_k<m+n \\ k=1,\ldots ,n \end{array}} \Biggl ( \det \left[ f_j\bigl (x^{(m+n)}_{l_k} \bigr ) \right] _{1\le j,k\le n} \det \left[ g_j \bigl (x^{(m+n)}_{l_k} \bigr ) \right] _{1\le j,k\le n} \prod _{1\le j\le n} \text {w}^{(m+n)}_{l_j} \Biggr ) \\&\qquad =\det \left[ \sum _{0\le l< m+n} f_j \bigl (x^{(m+n)}_l\bigr ) g_k \bigl (x^{(m+n)}_l\bigr ) \text {w}^{(m+n)}_{l} \right] _{1\le j,k\le n} . \end{aligned}$$

Upon exploiting the anti-symmetry of the determinants with respect to the ordering of the indices \(l_1,\ldots ,l_n\), the left hand side can be rewritten as

$$\begin{aligned} \sum _{m+n>l_1>l_2>\cdots >l_n\ge 0} \Biggl ( \det \left[ f_j\bigl (x^{(m+n)}_{l_k} \bigr ) \right] _{1\le j,k\le n} \det \left[ g_j \bigl (x^{(m+n)}_{l_k} \bigr ) \right] _{1\le j,k\le n} \prod _{1\le j\le n} \text {w}^{(m+n)}_{l_j} \Biggr ). \end{aligned}$$

This shows that the identity of interest amounts to the celebrated Cauchy–Binet formula

$$\begin{aligned} \sum _{\begin{array}{c} L\subset \{ 0,\ldots ,m+n-1\} \\ |L| = n \end{array}} \det F_L \det G_L = \det \left( F G^T \right) , \end{aligned}$$
(A.2)

with \(F=F_{\{ 0,\ldots ,m+n-1\}}\), \(G=G_{\{ 0,\ldots ,m+n-1\}}\) and

$$\begin{aligned} F_L= \left[ f_j\bigl (x^{(m+n)}_{l} \bigr ) \right] _{\begin{array}{c} 1\le j \le n\\ l\in L \end{array} } , \qquad G_L= \left[ g_j\bigl (x^{(m+n)}_{l} \bigr ) \text {w}^{(m+n)}_{l} \right] _{\begin{array}{c} 1\le j \le n\\ l\in L \end{array} } . \end{aligned}$$

In Eq. (A.2) the sum is over all subsets of indices L of cardinality \(|L|=n\), and \(G^T\) refers to the transposed matrix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Diejen, J.F., Emsiz, E. Cubature Rules for Unitary Jacobi Ensembles. Constr Approx 54, 145–156 (2021). https://doi.org/10.1007/s00365-020-09514-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-020-09514-1

Keywords

Mathematics Subject Classification

Navigation