Sharp Approximations for the Ramanujan Constant


In this paper, the authors present sharp approximations in terms of sine function and polynomials for the so-called Ramanujan constant (or the Ramanujan R-function) R(a), by showing some monotonicity, concavity and convexity properties of certain combinations defined in terms of R(a), \(\sin (\pi a)\) and polynomials. Some properties of the Riemann zeta function and its related special sums are presented, too.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1965)

    Google Scholar 

  2. 2.

    Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Mappings. Wiley, New York (1997)

    Google Scholar 

  3. 3.

    Anderson, G.D., Barnard, R.W., Richards, K.C., et al.: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 347, 1713–1723 (1995)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Anderson, G.D., Qiu, S.L., Vamanamurthy, M.K., Vuorinen, M.: Generalized elliptic integrals and modular equations. Pac. J. Math. 192(1), 1–37 (2000)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications. Cambridge Univ. Press, Cambridge (1999)

    Google Scholar 

  6. 6.

    Balasubramanian, R., Ponnusamy, S., Vuorinen, M.: Functional inequalities for quotients of hypergeometric functions. J. Math. Anal. Appl. 218, 256–268 (1998)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Ponnusamy, S., Vuorinen, M.: Asymptotic expansions and inequalities for hypergeometric function. Mathematika 44, 278–301 (1997)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Qiu, S.L.: Singular values, quasiconformal maps and the Schottky upper bound. Sci. China (Ser. A) 41(12), 1241–1247 (1998)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Qiu, S.L.: Grötzsch ring and Ramanujan’s modular equations. Acta Math. Sin. 43(2), 283–290 (2000)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Qiu, S.-L., Feng, B.-P.: Some properties of the Ramanujan constant. J. Hangzhou Dianzi Univ. 27(3), 88–91 (2007)

    Google Scholar 

  11. 11.

    Qiu, S.-L., Ma, X.-Y., Huang, T.-R.: Some properties of the difference between the Ramanujan constant and beta function. J. Math. Anal. Appl. 446, 114–129 (2017)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Qiu, S.L., Vuorinen, M.: Infinite products and the normalized quotients of hypergeometric function. SIAM J. Math. Anal. 30, 1057–1075 (1999)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Qiu, S.L., Vuorinen, M.: Handbook of Complex Analysis: Special Function in Geometric Function Theory, pp. 621–659. Elsevier, Amsterdam (2005)

    Google Scholar 

  14. 14.

    Wang, M.K., Chu, Y.M., Qiu, S.L.: Some monotonicity properties of generalized elliptic integrals with applications. Math. Inequal. Appl. 3, 671–677 (2013)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Wang, M.K., Chu, Y.M., Qiu, S.L.: Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 429, 744–757 (2015)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Zhou, P.G., Qiu, S.L., Tu, G.Y., Li, Y.L.: Some properties of the Ramanujan constant. J. Zhejiang Sci. Technol. Univ. 27(5), 835–841 (2010)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Song-Liang Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by NSF of China (Grant No.11171307) and Zhejiang Provincial NSF of China (Grant No.LQ17A010010).

Communicated by Mourad Ismail.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiu, S., Ma, X. & Huang, T. Sharp Approximations for the Ramanujan Constant. Constr Approx 51, 303–330 (2020).

Download citation


  • The Ramanujan constant
  • Monotonicity
  • Convexity and concavity
  • Approximation
  • Functional inequalities
  • The Riemann zeta function

Mathematics Subject Classification

  • 11M06
  • 33B15
  • 33C05
  • 33F05