Skip to main content
Log in

The Saff–Varga Width Conjecture and Entire Functions with Simple Exponential Growth

  • Published:
Constructive Approximation Aims and scope

Abstract

We show that the partial sums of the power series for a certain class of entire functions possess scaling limits in various directions in the complex plane. In doing so, we obtain information about the zeros of the partial sums. We will only assume that these entire functions have a certain asymptotic behavior at infinity. With this information, we will partially verify for this class of functions a conjecture on the location of the zeros of their partial sums known as the Saff–Varga width conjecture. Numerical results and figures are included to illustrate the results obtained for several well-known functions including the Airy functions and the parabolic cylinder functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, D.C., For sale by the Superintendent of Documents (1964)

  2. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.10 of 2015-08-07. http://dlmf.nist.gov/. Online companion to [17]

  3. Edrei, A.: The Padé table of functions having a finite number of essential singularities. Pac. J. Math. 56(2), 429–453 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  4. Edrei, A., Saff, E.B., Varga, R.S.: Zeros of Sections of Power Series, Lecture Notes in Mathematics, vol. 1002. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  5. Fettis, H.E., Caslin, J.C., Cramer, K.R.: Complex zeros of the error function and of the complementary error function. Math. Comp. 27, 401–407 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gakhov, F.D.: Boundary Value Problems. Translation edited by I. N. Sneddon. Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, London (1966)

  7. Janson, S., Norfolk, T.S.: Zeros of sections of the binomial expansion. Electron. Trans. Numer. Anal. 36, 27–38 (2009/10)

  8. Jenkins, R., McLaughlin, K.D.T.R.: Behavior of the Roots of the Taylor Polynomials of the Riemann Xi Function with Growing Degree. Constr. Approx. (2017) (to appear)

  9. Kappert, M.: On the zeros of the partial sums of \(\cos (z)\) and \(\sin (z)\). Numer. Math. 74(4), 397–417 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kriecherbauer, T., Kuijlaars, A.B.J., McLaughlin, K.D.T.R., Miller, P.D.: Locating the zeros of partial sums of \(e^z\) with Riemann-Hilbert methods. In: Integrable Systems and Random Matrices, Contemp. Math., vol. 458, pp. 183–195. Amer. Math. Soc., Providence, RI (2008)

  11. Miller, P.D.: Applied Asymptotic Analysis, Graduate Studies in Mathematics, vol. 75. American Mathematical Society, Providence (2006)

    Google Scholar 

  12. Miller, P.D.: Lecture notes on the analysis of Riemann-Hilbert problems. Department of Mathematics, University of Michigan, Ann Arbor (2015)

    Google Scholar 

  13. Muskhelishvili, N.I.: Singular Integral Equations. Dover Publications, Inc., New York (1992). Boundary Problems of Function Theory and Their Application to Mathematical Physics, Translated from the second (1946) Russian edition and with a preface by J.R.M. Radok, Corrected reprint of the 1953 English translation

  14. Newman, D.J., Rivlin, T.J.: The zeros of the partial sums of the exponential function. J. Approx. Theory 5, 405–412 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Norfolk, T.S.: On the zeros of the partial sums to \({}_1F_1(1;b;z)\). J. Math. Anal. Appl. 218(2), 421–438 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Norfolk, T.S.: Asymptotics of the partial sums of a set of integral transforms. Numer. Algorithms 25(1–4), 279–291 (2000). Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999)

  17. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010). Print companion to [2]

  18. Ostrovskii, I., Zheltukhina, N.: The asymptotic zero distribution of sections and tails of classical Lindelöf functions. Math. Nachr. 283(4), 573–587 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosenbloom, P.C.: On sequences of polynomials, especially sections of power series. Ph.D. thesis, Stanford University (1944). Abstracts in Bull. Amer. Math. Soc. 48 (1942), 839; 49 (1943), 689

  20. Rosenbloom, P.C.: Distribution of zeros of polynomials. In: Kaplan, W. (ed.) Lectures on Functions of a Complex Variable, pp. 265–285. The University of Michigan Press, Ann Arbor (1955)

    Google Scholar 

  21. Saff, E.B., Varga, R.S.: Geometric overconvergence of rational functions in unbounded domains. Pac. J. Math. 62(2), 523–549 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saff, E.B., Varga, R.S.: Some open problems concerning polynomials and rational functions. In: Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976), pp. 483–488. Academic Press, New York (1977)

  23. Szegő, G.: Über eine Eigenschaft der Exponentialreihe. Sitzungsber. Ber. Math. Ges. 23, 50–64 (1924)

    MATH  Google Scholar 

  24. Varga, R.S., Carpenter, A.J.: Zeros of the partial sums of \(\cos (z)\) and \(\sin (z)\) I. Numer. Algorithms 25(1–4), 363–375 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Varga, R.S., Carpenter, A.J.: Zeros of the partial sums of \(\cos (z)\) and \(\sin (z)\) II. Numer. Math. 90(2), 371–400 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Varga, R.S., Carpenter, A.J.: Zeros of the partial sums of \(\cos (z)\) and \(\sin (z)\) III. Appl. Numer. Math. 60(4), 298–313 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vargas, A.R.: Limit curves for zeros of sections of exponential integrals. Constr. Approx. 40(2), 219–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zheltukhina, N.: Asymptotic zero distribution of sections and tails of Mittag–Leffler functions. C. R. Math. Acad. Sci. Paris 335(2), 133–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

In memory of my grandmother, Jacquelyn Gray Belzano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio R. Vargas.

Additional information

Communicated by Doron S. Lubinsky.

This research was supported in part by an Izaak Walton Killam Memorial Scholarship and by long-term structural funding through a Methusalem grant from the Flemish government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, A.R. The Saff–Varga Width Conjecture and Entire Functions with Simple Exponential Growth. Constr Approx 49, 307–383 (2019). https://doi.org/10.1007/s00365-018-9422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-018-9422-x

Keywords

Mathematics Subject Classification

Navigation