Advertisement

Ambient Approximation on Hypersurfaces

  • N. Lehmann
  • L.-B. Maier
  • S. Odathuparambil
  • U. Reif
Article
  • 27 Downloads

Abstract

We present a novel general approach for solving approximation problems on hypersurfaces drawing on standard approximation techniques in the ambient space. The method is capable of transferring approximation orders from the ambient space to the hypersurface under mild conditions. When based on tensor product B-splines of order n and knot spacing h, the resulting approximant is \(C^{n-2}\), while the error decays at the optimal rate \(h^n\). Further, the method is easy to implement and, when applying quasi interpolation techniques, optimally efficient as the computational expense is linear in the number of spline coefficients. Applications include the representation of smooth surfaces of arbitrary genus.

Keywords

Spline approximation Manifold Closest point representation Multivariate spline Quasi-interpolation Implicit surface Data compression Local approximation order 

Mathematics Subject Classification

41A15 41A63 65D07 

References

  1. 1.
    Adams, R.: Sobolev Spaces. Academic Press, London (1970)MATHGoogle Scholar
  2. 2.
    Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction, vol. 2044. Springer, Berlin (2012)CrossRefMATHGoogle Scholar
  3. 3.
    Baramidze, V., Lai, M.-J., Shum, C.: Spherical splines for data interpolation and fitting. SIAM J. Sci. Comput. 28(1), 241–259 (2006)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Davydov, O., Schumaker, L.: Scattered data fitting on surfaces using projected Powell–Sabin splines. In: IMA International Conference on Mathematics of Surfaces, pp. 138–153. Springer (2007)Google Scholar
  5. 5.
    Davydov, O., Schumaker, L.L.: Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines. IMA J. Numer. Anal. 28(4), 785–805 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dziuk, G., Elliott, C.: Finite elements on evolving surfaces. IMA J. Numer. Anal. 27(2), 262–292 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fuselier, E., Wright, G.: Scattered data interpolation on embedded submanifolds with restricted positive definite kernels: Sobolev error estimates. SIAM J. Numer. Anal. 50(3), 1753–1776 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hangelbroek, T., Narcowich, F., Ward, J.: Polyharmonic and related kernels on manifolds: interpolation and approximation. Found. Comput. Math. 12(5), 625–670 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hoppe, H.: http://research.microsoft.com/en-us/um/people/hoppe/ (2013). Accessed 5 Feb 2013
  10. 10.
    Lehmann, N.: Modeling with ambient B-splines. Logos, Berlin (2014)MATHGoogle Scholar
  11. 11.
    Lehmann, N., Maier, L.-B., Odathuparambil, S., Reif, U.: Approximation and modeling with ambient B-splines. In: AIP Conference Proceedings, vol. 1738, p. 050002. AIP Publishing (2016)Google Scholar
  12. 12.
    Litvinov, W.: Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics, vol. 119. Birkhäuser, Basel (2012)Google Scholar
  13. 13.
    Majeed, M., Cirak, F.: Isogeometric analysis using manifold-based smooth basis functions. Comput. Methods Appl. Mech. Eng. 316, 547–567 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mößner, B., Reif, U.: Stability of tensor product B-splines on domains. J. Approx. Theory 154(1), 1–19 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Odathuparambil, S.: Ambient spline approximation on manifolds. Ph.D. thesis, Technische Universität Darmstadt (2016)Google Scholar
  16. 16.
    Reif, U.: Polynomial approximation on domains bounded by diffeomorphic images of graphs. J. Approx. Theory 164(7), 954–970 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ruuth, S., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Lehmann
    • 1
  • L.-B. Maier
    • 1
  • S. Odathuparambil
    • 1
  • U. Reif
    • 1
  1. 1.Department of MathematicsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations