Abstract
By exploiting a link between Bergman orthogonal polynomials and the Grunsky matrix, probably first observed by Kühnau (Ann Acad Sci Math 10:313–329, 1985), we improve on some recent results on strong asymptotics of Bergman polynomials outside the domain G of orthogonality, and on the entries of the Bergman shift operator. In our proofs, we suggest a new matrix approach involving the Grunsky matrix and use well-established results in the literature relating properties of the Grunsky matrix to the regularity of the boundary of G and the associated conformal maps. For quasiconformal boundaries, this approach allows for new insights for Bergman polynomials.
Similar content being viewed by others
References
Andrievskii, V., Blatt, H.-P.: Discrepancy of Signed Measures and Polynomial Approximation. Springer, Berlin (2002)
Beckermann, B.: Complex Jacobi matrices. J. Comput. Appl. Math. 127, 17–65 (2001)
Carleman, T.: Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen. Ark. Mat. Astron. Fys. 17, 215–244 (1923)
Clunie, J.: On schlicht functions. Ann. Math. (2) 69, 511–519 (1959)
Conway, J.B.: A Course in Operator Theory, Graduate Studies in Mathematics, vol. 21. AMS, Providence (2000)
Dragnev, P., Miña-Díaz, E.: On a series representation for Carleman orthogonal polynomials. Proc. Am. Math. Soc. 138(12), 4271–4279 (2010)
Dragnev, P., Miña-Díaz, E.: Asymptotic behavior and zero distribution of Carleman orthogonal polynomials. J. Approx. Theory 162, 1982–2003 (2010)
Dragnev, P., Miña-Díaz, E., Northington, V.M.: Asymptotics of Carleman polynomials for level curves of the inverse of a shifted Zhukovsky transformation. Comput. Methods Funct. Theory 13(1), 75–89 (2013)
Dunford, N., Schwartz, J.T.: Linear Operators, Volume 2: Spectral Theory, Selfadjoint operators in Hilbert space. Wiley, Hoboken (1988)
Gaier, D.: Lectures on Complex Approximation. Birkhäuser, Boston (1987)
Gaier, D.: The Faber operator and its boundedness. J. Approx. Theory 101(2), 265–277 (1999)
Gustafsson, B., Putinar, M., Saff, E.B., Stylianopoulos, N.: Les polynomes orthogonaux de Bergman sur un archipel. C. R. Acad. Sci. Paris Ser. I 346(9–10), 499–502 (2008)
Gustafsson, B., Putinar, M., Saff, E.B., Stylianopoulos, N.: Bergman polynomials on an archipelago: estimates, zeros and shape construction. Adv. Math. 222, 1405–1460 (2009)
Henrici, P.: Applied and Computational Complex Analysis, vol. 3. Wiley, Hoboken (1986)
Johnston, E.R.: A Study in Polynomial Approximation in the Complex Domain, Ph.D. thesis, University of Minnesota (1954)
Jones, G.L.: The Grunsky operator and the Schatten ideals. Mich. Math. J. 46, 93–100 (1999)
Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)
Kühnau, R.: Entwicklung gewisser dielektrischer Grundlösungen in Orthonormalreihen. Ann. Acad. Sci. Math. 10, 313–329 (1985)
Kühnau, R.: Zur Berechnung der Fredholmschen Eigenwerte ebener Kurven. ZAMM 66, 193–200 (1986)
Miña-Díaz, E.: On the leading coefficient of polynomials orthogonal over domains with corners. Numer. Algorithms 70, 1–8 (2015)
Pommerenke, Ch.: Univalent Functions. Vandenhoeck and Ruprecht, Göttingen (1975)
Pommerenke, Ch.: Boundary Behaviour of Conformal Maps. Springer, Berlin (1992)
Saff, E.B.: Orthogonal polynomials from a complex perspective. In: Nevai, P. (ed.) Orthogonal Polynomials: Theory and Practice, pp. 363–393. Kluwer, Dordrecht (1990)
Saff, E.B., Stylianopoulos, N.: Asymptotics for Hessenberg matrices for the Bergman shift operator on Jordan regions. Complex Anal. Oper. Theory 8, 1–24 (2014)
Saff, E.B., Stahl, H., Stylianopoulos, N., Totik, V.: Orthogonal polynomials for area-type measures and image recovery. SIAM J. Math. Anal. 47, 2442–2463 (2015)
Shen, Y.L.: Faber polynomials with applications to univalent functions with quasiconformal extensions. Sci. China Ser. A 52(10), 2121–2131 (2009)
Simon, B.: Szegő’s Theorem and Its Decendants. Princton University Press, Princton (2011)
Smirnov, V.I., Lebedev, N.A.: Functions of a Complex Variable. MIT Press, Cambrigde, MA (1968)
Stylianopoulos, N.: Strong asymptotics for Bergman orthogonal polynomials over domains with corners and applications. Constr. Approx. 38, 59–100 (2013)
Stylianopoulos, N.: Boundary estimates for Bergman polynomials in domains with corners. Contemp. Math. 661, 187–198 (2016)
Suetin, P.K.: Polynomials Orthogonal over a Region and Bieberbach Polynomials. American Mathematical Society, Providence (1974)
Takhtajan, L., Teo, L.P.: Weil–Petersson metric on the universal Teichmüller space. Mem. Am. Math. Soc. 861, 1–183 (2006)
Acknowledgements
The authors are grateful to the two referees for their helpful suggestions, especially for pointing out that the order in Theorem 1.1 is actually sharp for a specific piecewise analytic curve.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Edward B. Saff.
Bernhard Beckermann: Supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).
Nikos Stylianopoulos: Supported in part by the University of Cyprus grant 3/311-21027.
Rights and permissions
About this article
Cite this article
Beckermann, B., Stylianopoulos, N. Bergman Orthogonal Polynomials and the Grunsky Matrix. Constr Approx 47, 211–235 (2018). https://doi.org/10.1007/s00365-017-9381-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00365-017-9381-7
Keywords
- Bergman orthogonal polynomials
- Faber polynomials
- Conformal mapping
- Grunsky matrix
- Bergman shift
- Quasiconformal mapping