Skip to main content
Log in

Orthogonal Polynomial Projection Error Measured in Sobolev Norms in the Unit Disk

  • Published:
Constructive Approximation Aims and scope

Abstract

We study approximation properties of weighted \(L^2\)-orthogonal projectors onto the space of polynomials of degree less than or equal to N on the unit disk where the weight is of the generalized Gegenbauer form \(x \mapsto (1-\left|x\right|^2)^\alpha \). The approximation properties are measured in Sobolev-type norms involving canonical weak derivatives, all measured in the same weighted \(L^2\) norm. Our basic tool consists in the analysis of orthogonal expansions with respect to Zernike polynomials. The sharpness of the main result is proved in some cases. A number of auxiliary results of independent interest are obtained including some properties of the uniformly and nonuniformly weighted Sobolev spaces involved, connection coefficients between Zernike polynomials, an inverse inequality, and relations between the Fourier–Zernike expansions of a function and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  2. Aharmim, B., Amal, E.H., Fouzia, E.W., Ghanmi, A.: Generalized Zernike polynomials: operational formulae and generating functions. Integr. Transf. Spec. F. 26(6), 395–410 (2015). doi:10.1080/10652469.2015.1012510

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrews, G.E., Askey, R., Roy, R.: Special functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

  4. Bhatia, A.B., Wolf, E.: On the circle polynomials of Zernike and related orthogonal sets. Proc. Camb. Philos. Soc. 50, 40–48 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, J.P., Yu, F.: Comparing seven spectral methods for interpolation and for solving the Poisson equation in a disk: Zernike polynomials, Logan–Shepp ridge polynomials, Chebyshev–Fourier series, cylindrical Robert functions, Bessel–Fourier expansions, square-to-disk conformal mapping and radial basis functions. J. Comput. Phys. 230(4), 1408–1438 (2011). doi:10.1016/j.jcp.2010.11.011

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  7. Cação, I., Morais, J.: An orthogonal set of weighted quaternionic Zernike spherical functions. In: Computational Science and Its Applications—ICCSA 2014. Part I. Lecture Notes in Computer Science, vol. 8579, pp. 103–116. Springer, Cham (2014). doi:10.1007/978-3-319-09144-0_8

  8. Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 113–190 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)

    MATH  Google Scholar 

  10. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(157), 67–86 (1982). doi:10.2307/2007465

    Article  MathSciNet  MATH  Google Scholar 

  11. Dai, F., Xu, Y.: Moduli of smoothness and approximation on the unit sphere and the unit ball. Adv. Math. 224(4), 1233–1310 (2010). doi:10.1016/j.aim.2010.01.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Dai, F., Xu, Y.: Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball. J. Approx. Theory 163(10), 1400–1418 (2011). doi:10.1016/j.jat.2011.05.001

    Article  MathSciNet  MATH  Google Scholar 

  13. Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. Encyclopedia of Mathematics and its Applications, 2nd edn. Cambridge University Press, Cambridge (2014). doi:10.1017/CBO9781107786134

  14. Figueroa, L.E.: Deterministic simulation of multi-beaded models of dilute polymer solutions. Ph.D. thesis, University of Oxford (2011). http://ora.ox.ac.uk/objects/uuid:4c3414ba-415a-4109-8e98-6c4fa24f9cdc

  15. Figueroa, L.E.: Orthogonal polynomial projection error measured in Sobolev norms in the unit disk. Tech. rep., (2015). arXiv:1503.04485v2

  16. Girault, V., Raviart, P.A.: Finite element methods for Navier–Stokes equations. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). doi:10.1007/978-3-642-61623-5

  17. Glaeske, H.J.: On Zernicke [Zernike] transforms in spaces of distributions. Integr. Transf. Spec. F. 4(3), 221–234 (1996). doi:10.1080/10652469608819109

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, B.Y.: Gegenbauer approximation in certain Hilbert spaces and its applications to singular differential equations. SIAM J. Numer. Anal. 37(2), 621–645 (2000). doi:10.1137/S0036142998342161

    MathSciNet  MATH  Google Scholar 

  19. Janssen, A., Dirksen, P.: Computing Zernike polynomials of arbitrary degree using the discrete Fourier transform. J. Eur. Opt. Soc. Rapid Public. 2, 07012 (2007). doi:10.2971/jeos.2007.07012

  20. Janssen, A.J.E.M.: Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. J. Opt. Soc. Am. A 31(7), 1604–1613 (2014). doi:10.1364/JOSAA.31.001604

    Article  Google Scholar 

  21. Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 435–495. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. Academic Press, New York (1975)

  22. Koornwinder, T.H.: The addition formula for Jacobi polynomials II. The Laplace type integral and the product formula. Tech. Rep. 133, Math. Centrum Afd. Toegepaste Wisk. (1972)

  23. Kufner, A.: Weighted Sobolev Spaces. Wiley, New York (1985)

    MATH  Google Scholar 

  24. Kufner, A., Opic, B.: How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carol. 25(3), 537–554 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Li, H., Xu, Y.: Spectral approximation on the unit ball. SIAM J. Numer. Anal. 52(6), 2647–2675 (2014). doi:10.1137/130940591

    Article  MathSciNet  MATH  Google Scholar 

  26. Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66(3), 207–211 (1976). doi:10.1364/JOSA.66.000207

    Article  Google Scholar 

  27. Olver, F.W.J.: Asymptotics and special functions. AKP Classics. A K Peters, Ltd., Wellesley, MA (1997)

  28. Opic, B., Gurka, P.: Continuous and compact imbeddings of weighted Sobolev spaces. II. Czechoslov. Math. J. 39(1), 78–94 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Sheppard, C.J.R., Campbell, S., Hirschhorn, M.D.: Zernike expansion of separable functions of cartesian coordinates. Appl. Opt. 43(20), 3963–3966 (2004). doi:10.1364/AO.43.003963

    Article  Google Scholar 

  30. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  31. Tartar, L.: An introduction to Sobolev spaces and interpolation spaces. Lecture Notes of the Unione Matematica Italiana, vol. 3. Springer, Berlin (2007)

  32. Vasil, G.M., Burns, K.J., Lecoanet, D., Olver, S., Brown, B.P., Oishi, J.S.: Tensor calculus in polar coordinates using Jacobi polynomials. J. Comput. Phys. 325, 53–73 (2016). doi:10.1016/j.jcp.2016.08.013

    Article  MathSciNet  Google Scholar 

  33. Waldron, S.: Orthogonal polynomials on the disc. J. Approx. Theory 150(2), 117–131 (2008). doi:10.1016/j.jat.2007.05.001

    Article  MathSciNet  MATH  Google Scholar 

  34. Wünsche, A.: Generalized Zernike or disc polynomials. J. Comput. Appl. Math. 174(1), 135–163 (2005). doi:10.1016/j.cam.2004.04.004

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, Y.: Weighted approximation of functions on the unit sphere. Constr. Approx. 21(1), 1–28 (2005). doi:10.1007/s00365-003-0542-5

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their helpful and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo E. Figueroa.

Additional information

Communicated by Yuan Xu.

The author was supported by the MECESUP project UCO-0713 and the CONICYT project FONDECYT Regular 1130923.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueroa, L.E. Orthogonal Polynomial Projection Error Measured in Sobolev Norms in the Unit Disk. Constr Approx 46, 171–197 (2017). https://doi.org/10.1007/s00365-016-9358-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9358-y

Keywords

Mathematics Subject Classification

Navigation