Orthogonal Polynomials on the Circle for the Weight w Satisfying Conditions \(w,w^{-1}\in \mathrm{BMO}\)


For the weight w satisfying \(w,w^{-1}\in \mathrm{BMO}({\mathbb {T}})\), we prove the asymptotics of \(\{\Phi _n(e^{i\theta },w)\}\) in \(L^p[-\pi ,\pi ], 2\leqslant p<p_0\), where \(\{\Phi _n(z,w)\}\) are monic polynomials orthogonal with respect to w on the unit circle \({\mathbb {T}}\). Immediate applications include the estimates on the uniform norm and asymptotics of the polynomial entropies. The estimates on higher-order commutators between the Calderon–Zygmund operators and BMO functions play the key role in the proofs of main results.

This is a preview of subscription content, access via your institution.


  1. 1.

    Ambroladze, M.U.: On the possible rate of growth of polynomials that are orthogonal with a continuous positive weight (Russian). Mat. Sb. 182(3), 332–353 (1991); English translation in: Math. USSR-Sb. 72(2), 311–331 (1992)

  2. 2.

    Aptekarev, A., Denisov, S., Tulyakov, D.: On a problem by Steklov. J. AMS. doi:10.1090/jams/853

  3. 3.

    Aptekarev, A.I., Buyarov, V.S., Dehesa, I.S.: Asymptotic behavior of \(L^p\)-norms and the entropy for general orthogonal polynomials. Russ. Acad. Sci. Sb. Math. 82(2), 373–395 (1995)

    MathSciNet  Google Scholar 

  4. 4.

    Aptekarev, A.I., Dehesa, J.S., Martínez-Finkelshtein, A.: Asymptotics of orthogonal polynomial’s entropy. J. Comput. Appl. Math. 233(6), 1355–1365 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Beckermann, B., Martínez-Finkelshtein, A., Rakhmanov, E.A., Wielonsky, F.: Asymptotic upper bounds for the entropy of orthogonal polynomials in the Szegő class. J. Math. Phys. 45(11), 4239–4254 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bernstein, S.: Sur les polynomes orthogonaux relatifs a un segment fini. Journal de Mathematiques 9, 127–177 (1930); 10, 219–286 (1931)

  7. 7.

    Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103(3), 611–635 (1976)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Denisov, S., Nazarov, F.: Polynomials orthogonal on the circle: new upper and lower bounds (preprint)

  9. 9.

    Denisov, S., Kupin, S.: On the growth of the polynomial entropy integrals for measures in the Szegő class. Adv. Math. 241, 18–32 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Geronimus, Ya.L.: Polynomials Orthogonal on the Circle and on the Interval. GIFML, Moscow, (1958) (in Russian); English translation: International Series of Monographs on Pure and Applied Mathematics, vol. 18. Pergamon Press, New York-Oxford-London-Paris (1960)

  11. 11.

    Geronimus, Y.L.: Some estimates of orthogonal polynomials and the problem of Steklov. Dokl. Akad. Nauk SSSR 236(1), 14–17 (1977)

    MathSciNet  Google Scholar 

  12. 12.

    Geronimus, Y.L.: The relation between the order of growth of orthonormal polynomials and their weight function. Mat. Sb. (N.S.) 61(103), 65–79 (1963)

    MathSciNet  Google Scholar 

  13. 13.

    Geronimus, Y.L.: On a conjecture of V. A. Steklov. Dokl. Akad. Nauk SSSR 142, 507–509 (1962)

    MathSciNet  Google Scholar 

  14. 14.

    Golinskii, B.L.: The problem of V. A. Steklov in the theory of orthogonal polynomials. Mat. Zametki 15, 21–32 (1974)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Perez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Pichorides, S.K.: On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, II. Stud. Math. 44, 165–179 (1972)

    MathSciNet  MATH  Google Scholar 

  17. 17.

    Rahmanov, E.A.: On Steklov’s conjecture in the theory of orthogonal polynomials, Matem. Sb., 108(150), 581–608 (1979); English translation: Math. USSR, Sb. 36, 549–575 (1980)

  18. 18.

    Rahmanov, E.A.: Estimates of the growth of orthogonal polynomials whose weight is bounded away from zero. Matem. Sb. 114(156):2, 269–298 (1981); English translation: Math. USSR, Sb. 42, 237–263 1982

  19. 19.

    Simon, B.: Orthogonal polynomials on the unit circle, vols. 1 and 2. AMS (2005)

  20. 20.

    Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    Google Scholar 

  21. 21.

    Steklov, V.A.: Une methode de la solution du probleme de developmentdes fonctions en series de polynomes de Tchebysheff independante dela theorie de fermeture. Izv. Rus. Ac. Sci. 281–302, 303–326 (1921)

  22. 22.

    Suetin, P.K.: V. A. Steklov’s problem in the theory of orthogonal polynomials. Itogi Nauki i Tech. Mat. Anal. VINITI 15, 5–82 (1977); English translation: J. Sov. Math. 12(6), 631–682 (1979)

  23. 23.

    Szegő, G.: Orthogonal Polynomials. American Mathematical Society, Colloquium Publ. 23, Providence RI, 1975 (fourth edition)

Download references


The work of SD done in the second part of the paper was supported by RSF-14-21-00025, and his research on the rest of the paper was supported by the Grant NSF-DMS-1464479. The research of KR was supported by the RTG Grant NSF-DMS-1147523.

Author information



Corresponding author

Correspondence to Sergey Denisov.

Additional information

Communicated by Percy A. Deift.



In this Appendix, we collect some auxiliary results used in the main text.

Lemma 3.1

For every \(p\in [2,\infty )\),

$$\begin{aligned} \Vert P_{[1,n]}\Vert _{p,p}\leqslant \cot \left( \frac{\pi }{2p}\right) . \end{aligned}$$


If \(\mathcal {P}^+\) is the projection of \(L^2({\mathbb {T}})\) onto \(H^2({\mathbb {T}})\) (analytic Hardy space), then

$$\begin{aligned} P_{[1,n]}=z\mathcal {P}^+z^{-1}-z^{n+1} \mathcal {P}^+ z^{-(n+1)} = 0.5 \left( zHz^{-1}-z^{n+1} H z^{-(n+1)}\right) , \end{aligned}$$

where H is the Hilbert transform. Since \(\Vert H\Vert _{p,p}=\cot (\pi /(2p))\) [16], we have the lemma by the triangle inequality. \(\square \)

The proof of the following lemma uses some standard results of harmonic analysis.

Lemma 3.2

If \(\Vert w\Vert _{\mathrm{BMO}}=t\) and \(p\in [2,3]\), then we have

$$\begin{aligned} \Vert \mathbf{C}_j\Vert _{p,p}\leqslant (Cjt)^j. \end{aligned}$$


Consider the following operator-valued function:

$$\begin{aligned} F(z)=e^{zw}P_{[1,n]}e^{-zw}. \end{aligned}$$

If we can prove that F(z) is weakly analytic around the origin (i.e., analyticity of the scalar function \(\langle F(z)f_1,f_2\rangle \) with fixed \(f_{1(2)}\in C^\infty \)), then

$$\begin{aligned} F(z)=\frac{1}{2\pi i}\int _{|\xi |=\epsilon } \frac{F(\xi )}{\xi -z}d\xi , \quad z\in B_\epsilon (0), \end{aligned}$$

understood in a weak sense. By induction, one can then easily show the well-known formula

$$\begin{aligned} \mathbf{C}_j=\partial ^{j}F(0)=\frac{j!}{2\pi i}\int _{|\xi |=\epsilon } \frac{F(\xi )}{\xi ^{j+1}}d\xi , \end{aligned}$$

which explains that we can control \(\Vert \mathbf{C}_j\Vert _{p,p}\) by the size of \(\Vert F(\xi )\Vert _{p,p}\) on the circle of radius \(\epsilon \). Indeed,

$$\begin{aligned} \Vert \mathbf{C}_j\Vert _{p,p}= & {} \sup _{f_{1(2)}\in C^\infty , \Vert f_1\Vert _p\leqslant 1, \Vert f_2\Vert _{p'}\leqslant 1} |\langle \mathbf{C}_j f_1,f_2\rangle | \\\le & {} \frac{j!}{2\pi }\sup _{f_{1(2)}\in C^\infty , \Vert f_1\Vert _p\leqslant 1, \Vert f_2\Vert _{p'}\leqslant 1}\left| \int _{|\xi |=\epsilon } \frac{\langle F(\xi )f_1,f_2\rangle }{\xi ^{j+1}}d\xi \right| \\\leqslant & {} \frac{j!}{\epsilon ^j}\max _{|\xi |=\epsilon }\Vert F(\xi )\Vert _{p,p}. \end{aligned}$$

The weak analyticity of F(z) around the origin follows immediately from, e.g., the John–Nirenberg estimate ([20], p.144). To bound \(\Vert F\Vert _{p,p}\), we use the following well-known result (which is again an immediate corollary from the John–Nirenberg inequality, see, e.g., [20], p.218).

There is \(\epsilon _0\) such that

$$\begin{aligned} \Vert \widetilde{w}\Vert _{\mathrm{BMO}}<\epsilon _0 \implies [e^{\widetilde{w}}]_{A_p}\leqslant [e^{\widetilde{w}}]_{A_2}<C,\quad p>2. \end{aligned}$$

The Hunt–Muckenhoupt–Wheeden theorem ([20], p.205) asserts that

$$\begin{aligned} \sup _{[\widehat{w}]_{A_p}\leqslant C} \Vert H\Vert _{(L^p_{\widehat{w}}({\mathbb {T}}),L^p_{\widehat{w}}({\mathbb {T}}))}= & {} \sup _{[\widehat{w}]_{A_p}\leqslant C} \Vert \widehat{w}^{1/p}H\widehat{w}^{-1/p}\Vert _{p,p} \nonumber \\= & {} C(p)<\infty , \quad p\in [2,\infty ). \end{aligned}$$

Taking \(\epsilon \ll t^{-1}\), we get the statement. \(\square \)

The following lemma provides an estimate that is not optimal, but it is good enough for our purposes.

Lemma 3.3

Suppose \(w\geqslant 0,\Vert w\Vert _{\mathrm{BMO}}=t, \Vert w^{-1}\Vert _{\mathrm{BMO}}=s\), and \(\Vert w\Vert _1=1\). Then,

$$\begin{aligned} (2\pi )^2\leqslant \Vert w^{-1}\Vert _1\lesssim 1+(1+t)s. \end{aligned}$$


Set \(\Vert w^{-1}\Vert _1=M\). Then, by the Cauchy–Schwarz inequality,

$$\begin{aligned} 2\pi \leqslant \Vert w\Vert _1^{1/2}\Vert w^{-1}\Vert ^{1/2}_1=M^{1/2}. \end{aligned}$$

On the other hand, by the John–Nirenberg estimate for \(w^{-1}\),

$$\begin{aligned} |\{\theta : |w^{-1}-(2\pi )^{-1}M|>\lambda \}|\lesssim \exp \left( -\frac{C\lambda }{s}\right) . \end{aligned}$$

Choosing \(\lambda =(4\pi )^{-1}M\), we get

$$\begin{aligned} |\Omega ^c|\lesssim \exp \left( -\frac{CM}{s}\right) \lesssim \left( \frac{s}{M}\right) ^2,\quad \mathrm{where}\quad \,\Omega =\Bigl \{\theta :\frac{4\pi }{3M}\leqslant w\leqslant \frac{4\pi }{M}\Bigr \}. \end{aligned}$$

Then, \(\Vert w\Vert _1=1\), and therefore

$$\begin{aligned} 1= & {} \int _{w\leqslant (4\pi )/M}wd\theta +\int _{w>(4\pi )/M}wd\theta \nonumber \\ \int _{w>(4\pi )/M}wd\theta\geqslant & {} 1-8\pi ^2 M^{-1}. \end{aligned}$$

By the John–Nirenberg inequality, we have

$$\begin{aligned} \Vert w-(2\pi )^{-1}\Vert _p<Ctp,\quad p<\infty . \end{aligned}$$

We choose \(p=2\) in the last estimate and use the Cauchy–Schwarz inequality in (18) to get

$$\begin{aligned} 1-8\pi ^2 M^{-1}\leqslant & {} \int _{w>(4\pi )/M}wd\theta \leqslant \Vert w\Vert _2 \cdot |\{\theta : w>4\pi /M\}|^{1/2} \\\leqslant & {} \Vert w\Vert _2 \cdot |\Omega _c|^{1/2} \lesssim \frac{(1+t)s}{M}, \end{aligned}$$

where we used (17) and (19) for the last bound. So, \( M\lesssim (1+t)s+1\). \(\square \)

Lemma 3.4

For \(p\in [2,\infty )\), we have

$$\begin{aligned} \Vert [w,P_{[1,n]}]\Vert _{p,p}\lesssim p^2\Vert w\Vert _{\mathrm{BMO}}. \end{aligned}$$


The proof is standard, but we give it here for completeness. Assume \(\Vert w\Vert _{\mathrm{BMO}}=1\). By duality and formula (15), it is sufficient to show that

$$\begin{aligned} \Vert [w,H]\Vert _{p,p}\leqslant C(p-1)^{-2}, \quad p\in (1,2]. \end{aligned}$$

We will interpolate between two bounds: the standard Coifman–Rochberg–Weiss theorem for \(p=2\) ([7, 20]),

$$\begin{aligned} \Vert [H,w]\Vert _{2,2}\leqslant C, \end{aligned}$$

and the following estimate:

$$\begin{aligned} |\{x:|([H,w]f)(x)|>\alpha \}|\leqslant C \int _{{\mathbb {T}}} \frac{|f(t)|}{\alpha }\left( 1+\log ^+\left( \frac{|f(t)|}{\alpha }\right) \right) dt. \end{aligned}$$

(See [15]; the estimate was obtained on \({\mathbb {R}}\) for smooth f with compact support. The proof, however, is valid for \({\mathbb {T}}\) as well and, e.g., piece-wise smooth continuous f). Assume a smooth f is given and set \(\lambda _f(t)=|\{x: |f(x)|>t\}|, t\geqslant 0\). Take \(A>0\), and consider \(f_A=f\cdot \chi _{|f|\leqslant A}+A\cdot \mathrm{sgn}f\cdot \chi _{|f|>A}\), \(g_A=f-f_A\). Let \(T=[H,w]\). Then,

$$\begin{aligned} \Vert Tf\Vert _p^p= & {} p\int _0^\infty t^{p-1}\lambda _{Tf}(t)dt\leqslant p\int _0^\infty t^{p-1}\lambda _{Tf_A}(t/2)dt \\&+ p\int _0^\infty t^{p-1}\lambda _{Tg_A}(t/2)dt=I_1+I_2. \end{aligned}$$

Let \(A=t\). From the Chebyshev inequality and (21), we get

$$\begin{aligned} I_1\lesssim & {} \int _0^\infty t^{p-3}\Vert f_A\Vert _2^2dt=2\int _0^\infty t^{p-3}\int _0^A \xi \lambda _f(\xi )d\xi dt \\\lesssim & {} (2-p)^{-1}\int _0^\infty \xi ^{p-1}\lambda _f(\xi )d\xi \lesssim (2-p)^{-1}\Vert f\Vert _p^p. \end{aligned}$$

For \(I_2\), we use (22) (notice that \(g_A\) is continuous and piece-wise smooth)

$$\begin{aligned} I_2\lesssim & {} -\int _0^\infty t^{p-1}\int _0^\infty \frac{\xi }{t}\left( 1+\log ^+\frac{\xi }{t}\right) d\lambda _{g_A}(\xi )\\\lesssim & {} \Vert f\Vert _p^p+\int _0^\infty t^{p-1}\int _{2t}^\infty t^{-1}\Bigl (1+\log ^+((\tau -t)/t)\Bigr )\lambda _{f}(\tau )d\tau \\\lesssim & {} \Vert f\Vert _p^p \int _0^1 \xi ^{p-2}\left( 1+\log ^+\frac{1-\xi }{\xi }\right) d\xi . \end{aligned}$$

We have

$$\begin{aligned} \int _0^{1/2} \xi ^{p-2}\left( 1+\log ^+\frac{1-\xi }{\xi }\right) d\xi \lesssim \int _2^\infty u^{-p}\log u du\lesssim \int _0^\infty e^{-\delta t}tdt\lesssim \delta ^{-2} \end{aligned}$$

with \(\delta =p-1\). \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Denisov, S., Rush, K. Orthogonal Polynomials on the Circle for the Weight w Satisfying Conditions \(w,w^{-1}\in \mathrm{BMO}\) . Constr Approx 46, 285–303 (2017). https://doi.org/10.1007/s00365-016-9350-6

Download citation


  • Orthogonal polynomials
  • Weight
  • Bounded mean oscillation

Mathematics Subject Classification

  • 42C05
  • 33D45