Skip to main content
Log in

Universal Lower Bounds for Potential Energy of Spherical Codes

  • Published:
Constructive Approximation Aims and scope

Abstract

We derive and investigate lower bounds for the potential energy of finite spherical point sets (spherical codes). Our bounds are optimal in the following sense—they cannot be improved by employing polynomials of the same or lower degrees in the Delsarte–Yudin method. However, improvements are sometimes possible, and we provide a necessary and sufficient condition for the existence of such better bounds. All our bounds can be obtained in a unified manner that does not depend on the potential function, provided the potential is given by an absolutely monotone function of the inner product between pairs of points, and this is the reason we call them universal. We also establish a criterion for a given code of dimension n and cardinality N not to be LP-universally optimal; e.g., we show that two codes conjectured by Ballinger et al. to be universally optimal are not LP-universally optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In fact, these are a specialized version of the functions \(Q_j^{(n)}\) from Theorem 2.6.

  2. We note that [2] uses the notation (Nn) instead.

References

  1. Andreev, N.N.: Location of points on a sphere with minimal energy, Tr. Math. Inst. Steklova 219, 27–31 (1997) (in Russian); English translation: Proc. Inst. Math. Steklov 219, 20–24 (1997)

  2. Ballinger, B., Blekherman, G., Cohn, H., Giansiracusa, N., Kelly, E., Schürmann, A.: Experimental study of energy-minimizing point configurations on spheres. Exp. Math. 18, 257–283 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bannai, E., Damerell, R.M.: Tight spherical designs I. J. Math. Soc. Jpn. 31, 199–207 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bannai, E., Damerell, R.M.: Tight spherical designs II. J. Lond. Math. Soc. 21, 13–30 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beckermann, B., Bustamante, J., Martinez-Cruz, R., Quesada, J.: Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa. Calcolo 51, 319–328 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borodachov, S., Hardin, D., Saff, E.: Minimal Discrete Energy on Rectifiable Sets. Springer, Berlin (2016). (to appear)

    MATH  Google Scholar 

  7. Boumova, S.P.: Applications of polynomials to spherical codes anddesigns, PhD Dissert, TU Eindhoven (2001)

  8. Boyvalenkov, P.G.: Linear programming bounds for spherical codes and designs. Dr. Sci. Dissert., Inst. Math. Inf. BAS, Sofia (2004) (in Bulgarian)

  9. Boyvalenkov, P., Bumova, S., Danev, D.: Necessary conditions for existence of some designs in polynomial metric spaces. Eur. J. Comb. 20, 213–225 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boyvalenkov, P.G., Danev, D.P.: On Maximal Codes in Polynomial Metric Spaces. Lecture Notes in Computer Science, vol. 1255, pp. 29–38. Springer (1997)

  11. Boyvalenkov, P.G., Danev, D.P., Bumova, S.P.: Upper bounds on the minimum distance of spherical codes. IEEE Trans. Inf. Theory 41, 1576–1581 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Boyvalenkov, P., Danev, D., Landjev, I.: On maximal spherical codes II. J. Comb. Des. 7, 316–326 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cohn, H., Conway, J., Elkies, N., Kumar, A.: The \(D_4\) root system is not universally optimal. Exp. Math. 16, 313–320 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20, 99–148 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cohn, H., Woo, J.: Three point bounds for energy minimization. J. Am. Math. Soc. 25, 929–958 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, New York (1963)

    MATH  Google Scholar 

  17. Delsarte, P.: An algebraic approach to the association schemes in coding theory. Philips Res. Rep. Suppl. 10 (1973)

  18. Delsarte, P., Goethals, J.-M., Seidel, J.J.: Spherical codes and designs. Geom. Dedicata 6, 363–388 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Erdélyi, T., Magnus, A., Nevai, P.: Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials. SIAM J. Math. Anal. 25, 602–614 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not. Am. Math. Soc. 51, 1186–1194 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Kabatiansky, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in space (Russian). Problemy Peredachi Informacii 14, 3–25 (1978). English translation in Problems of Information Transmission 14, 1–17 (1978)

  22. Kolushov, A.V., Yudin, V.A.: Extremal dispositions of points on the sphere. Anal. Math. 23, 25–34 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Koornwinder, T.H.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25, 236–246 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Krasikov, I.: An upper bound on Jacobi polynomials. J. Approx. Theory 149, 116–130 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Levenshtein, V.I.: Bounds for packings in metric spaces and certain applications. Probl. Kibern. 40, 44–110 (1983). (in Russian)

    MathSciNet  Google Scholar 

  26. Levenshtein, V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl. Math. 25, 1–82 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Levenshtein, V.I.: Universal bounds for codes and designs. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 499–648. Elsevier, Amsterdam (1998)

    Google Scholar 

  28. Matrin, W.J., Williford, J.S.: There are finitely many \(Q\)-polynomial association schemes with given first multiplicity at least three. Eur. J. Comb. 30, 698–704 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

    Book  Google Scholar 

  30. Musin, O.: The kissing number in four dimensions. Ann. Math. 168, 1–32 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sidelnikov, V.M.: On extremal polynomials used to estimate the size of codes. Probl. Inf. Transm. 16, 174–186 (1980)

    MathSciNet  Google Scholar 

  33. Szegő, G.: Orthogonal Polynomials, vol. 23. AMS Col. Publ, Providence (1939)

    Book  MATH  Google Scholar 

  34. Watson, G.N.: A Treatise of the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  35. Yudin, V.A.: Minimal potential energy of a point system of charges. Discret. Mat. 4, 115–121 (1992) (in Russian). English translation: Discr. Math. Appl. 3, 75–81 (1993)

Download references

Acknowledgments

We would like to thank Dr. Silvia Boumova for kindly allowing us to include the proof of Theorem 4.4(b) so as to make this article self-contained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Stoyanova.

Additional information

Communicated by Vilmos Totik.

P. G. Boyvalenkov: The research of this author was supported, in part, by a Bulgarian NSF contract I01/0003.

P. D. Dragnev: The research of this author was supported, in part, by a Simons Foundation grant no. 282207.

D. P. Hardin and E. B. Saff: The research of these authors was supported, in part, by the U.S. National Science Foundation under grants DMS-1109266 and DMS-1412428.

M. M. Stoyanova: The research of this author was supported, in part, by the Science Foundation of Sofia University under contract 015/2014.

The authors express their gratitude to the Erwin Schrödinger International Institute for providing an excellent research atmosphere during which a significant part of this manuscript was written.

Appendix

Appendix

In this appendix, we give the proof of Theorem 4.4(b), which has appeared so far only in the dissertation of Boumova [7]. We set \(P_i^{(\frac{n-1}{2}, \frac{n-3}{2})}(t) := P_i^{1,0}(t)\) for short and use the Christoffel–Darboux formula (see [27, Equation (5.65)])

$$\begin{aligned} P_i^{1,0}(t)\sum _{j=0}^i r_j=\sum _{j=0}^i r_jP_j^{(n)}(t)={n+i-2 \atopwithdelims ()i}\frac{P_i^{(n)}(t)-P_{i+1}^{(n)}(t)}{1-t}. \end{aligned}$$
(37)

We also set \(P_i^{(n)}(t)=\sum _{j=0}^i a_{i,j}t^j\).

For the proof of Theorem 4.4(b), we show for each \(n\ge 3\) and s in the interior of \(I_{2k-1}\) that \(Q_{2k+3}(n,s)<0\) for k sufficiently large, and thus, by Theorem 4.1, the bound \(R_{2k-1}(n,N;h)\) can be improved. For this purpose, we present several lemmas.

Lemma 4.14

Let \(n \ge 3\), \(s \in \left( t_{k-1}^{1,1},t_k^{1,0}\right) \), and \(\alpha _i=\alpha _i(s)\), \(i=1,\ldots , k\) be the associated Levenshtein quadrature nodes, see (22). Then \(Q_{2k+3}(n,s)<0\) if and only if

$$\begin{aligned} \sum _{i=1}^{k} \alpha _i^2 < \frac{2k^2+k+1-n}{n+4k+2}. \end{aligned}$$

Proof

This is Corollary 4.4(a) from [11]. \(\square \)

To find the sum \(\sum _{i=1}^{k} \alpha _i^2\) appearing in Lemma 4.14, we express the sums \(\sum _{i=1}^{k} \alpha _i\) and \(\sum _{1 \le i< j\le k} \alpha _i\alpha _j\) as functions of n, k, and s.

Lemma 4.15

For every \(s \in I_{2k-1}\), \(k \ge 2\), the numbers \(\alpha _1,\alpha _2,\ldots ,\alpha _k\) satisfy the equalities

$$\begin{aligned} \sum _{i=1}^{k} \alpha _i= & {} -\frac{k}{n+2k-2} X , \end{aligned}$$
(38)
$$\begin{aligned} \sum _{1 \le i< j \le k} \alpha _i\alpha _j= & {} - \frac{k^2-k}{2(n+2k-4)} + \frac{k(k-1)}{(n+2k-2)(n+2k-4)} X, \end{aligned}$$
(39)

where

$$\begin{aligned} X = 1 - \frac{(n+2k-1)(n+k-2)}{k(n+2k-3)} \cdot \frac{P_k^{1,0}(s)}{P_{k-1}^{1,0}(s)}. \end{aligned}$$

Proof

The numbers \(\alpha _1,\alpha _2,\ldots ,\alpha _{k}\) are the roots of the equation (24)

$$\begin{aligned} q(t) = P_k^{1,0}(t)P_{k-1}^{1,0}(s) - P_k^{1,0}(s)P_{k-1}^{1,0}(t)=0. \end{aligned}$$

Comparing the coefficients in (37), we obtain

$$\begin{aligned} q(t)= & {} \frac{a_{k,k} r_k P_{k-1}^{1,0}(s)}{\sum _{i=0}^k r_i} t^k \\&+ ~a_{k-1,k-1} r_{k-1} \left( \frac{P_{k-1}^{1,0}(s)}{\sum _{i=0}^k r_i} - \frac{P_k^{1,0}(s)}{\sum _{i=0}^{k-1} r_i} \right) t^{k-1}\\&+ ~\left[ \frac{( a_{k,k-2} r_k + a_{k-2,k-2} r_{k-2}) P_{k-1}^{1,0}(s)}{\sum _{i=0}^k r_i} - \frac{ a_{k-2,k-2} r_{k-2} P_k^{1,0}(s)}{\sum _{i=0}^{k-1} r_i} \right] t^{k-2}+\cdots \end{aligned}$$

Therefore, we have

$$\begin{aligned} \sum _{i=1}^{k} \alpha _i= & {} -~\frac{a_{k-1,k-1} r_{k-1} \left( \frac{P_{k-1}^{1,0}(s)}{\sum _{i=0}^k r_i} - \frac{P_k^{1,0}(s)}{\sum _{i=0}^{k-1} r_i} \right) }{\frac{a_{k,k} r_k P_{k-1}^{1,0}(s)}{\sum _{i=0}^k r_i}} \\= & {} -~\frac{a_{k-1,k-1}r_{k-1} }{a_{k,k}r_k} \left( 1 - \frac{\sum _{i=0}^k r_i}{\sum _{i=0}^{k-1} r_i} \cdot \frac{P_k^{1,0}(s)}{P_{k-1}^{1,0}(s)} \right) \\= & {} -\frac{k}{n+2k-2} \left( 1 - \frac{(n+2k-1)(n+k-2)}{k(n+2k-3)} \cdot \frac{P_k^{1,0}(s)}{P_{k-1}^{1,0}(s)} \right) . \end{aligned}$$

Here, we used that

$$\begin{aligned} \frac{a_{k-1,k-1}}{a_{k,k}}=\frac{n+k-3}{n+2k-4} \end{aligned}$$

from (1), the constants \(r_i\) as in (2), and \(\sum _{i=0}^j r_i\), which is equal to the Delsarte–Goethals–Seidel bound D(n, 2j) (this is for \(j=k\) and \(j=k-1\)).

Similarly, we obtain

$$\begin{aligned} \sum _{1 \le i< j \le k} \alpha _i\alpha _j= & {} \frac{\frac{( a_{k,k-2} r_k + a_{k-2,k-2} r_{k-2}) P_{k-1}^{1,0}(s)}{\sum _{i=0}^k r_i} - \frac{ a_{k-2,k-2} r_{k-2} P_k^{1,0}(s)}{\sum _{i=0}^{k-1} r_i} }{\frac{a_{k,k} r_k P_{k-1}^{1,0}(s)}{\sum _{i=0}^k r_i}}\\= & {} \frac{ a_{k,k-2}}{a_{k,k} } + \frac{ a_{k-2,k-2} r_{k-2}}{a_{k,k} r_k} \left( 1 - \frac{\sum _{i=0}^k r_i}{\sum _{i=0}^{k-1} r_i} \frac{P_k^{1,0}(s)}{P_{k-1}^{1,0}(s)} \right) \\= & {} - \frac{k^2-k}{2(n+2k-4)} + \frac{k(k-1)}{(n+2k-2)(n+2k-4)} \\&\times \left( 1 - \frac{(n+2k-1)(n+k-2)}{k(n+2k-3)} \frac{P_k^{1,0}(s)}{P_{k-1}^{1,0}(s)} \right) . \end{aligned}$$

\(\square \)

It follows from Lemma 4.14 and equalities (38) and (39) that we have to investigate the sign of the function

$$\begin{aligned} G(n,k,s)= & {} \sum _{i=1}^{k} \alpha _i^2 - \frac{2k^2+k+1-n}{n+4k+2}\\= & {} \left( \sum _{i=1}^{k} \alpha _i \right) ^2 - 2\sum _{1 \le i< j \le k} \alpha _i\alpha _j - \frac{2k^2+k+1-n}{n+4k+2} \\= & {} \frac{k^2}{(n+2k-2)^2}X^2 - \frac{2k(k-1)}{(n+2k-2)(n+2k-4)}X \\&+ \frac{k(k-1)}{n+2k-4} - \frac{2k^2+k+1-n}{n+4k+2}, \end{aligned}$$

where X is as in Lemma 4.15 and \(s \in I_{2k-1}=\left[ t_{k-1}^{1,1},t_k^{1,0}\right] \).

Lemma 4.16

For fixed n and k, the function G(nks) is decreasing for \(s \in I_{2k-1}\).

Proof

The function G(nks) is quadratic with respect to X. Since \(s \in \left[ t_{k-1}^{1,1},t_k^{1,0}\right] \subset \left( t_{k-1}^{1,0},t_k^{1,0}\right] \), the ratio \(P_k^{1,0}(s)/P_{k-1}^{1,0}(s)\) increases in \(I_{2k-1}\) (see [26, Corollary 2.1]). Therefore X decreases in s in the same interval, and we need to determine the numbers

$$\begin{aligned} X_1= & {} 1 - \frac{(n+2k-1)(n+k-2)}{k(n+2k-3)} \cdot \frac{P_k^{1,0}\left( t_{k-1}^{1,1}\right) }{P_{k-1}^{1,0}\left( t_{k-1}^{1,1}\right) } \end{aligned}$$

and

$$\begin{aligned} X_2= & {} 1 - \frac{(n+2k-1)(n+k-2)}{k(n+2k-3)} \cdot \frac{P_k^{1,0}\left( t_k^{1,0}\right) }{P_{k-1}^{1,0}\left( t_k^{1,0}\right) } \end{aligned}$$

(the end points of the interval of variation of X). We obtain

$$\begin{aligned} X_1 = 1 + \frac{(n+2k-1)(n+k-2)(n+2k-3)}{k(n+2k-3)(n+2k-1)}= \frac{n+2k-2}{k} \end{aligned}$$

using (30) and

$$\begin{aligned} X_2 = 1, \end{aligned}$$

because \(P_k^{1,0}\left( t_k^{1,0}\right) = 0\).

We can already locate the numbers \(X_1\) and \(X_2\) with respect to the minimum of the graph of the quadratic function

$$\begin{aligned} g(X)= & {} G(n,k,s) \\= & {} \frac{k^2}{(n+2k-2)^2}X^2~ -~\frac{2k(k-1)}{(n+2k-2) (n+2k-4)}X\\&~ + ~\frac{k(k-1)}{n+2k-4}~-~\frac{2k^2+k-n+1}{n+4k+2}. \end{aligned}$$

The minimum of g(X) is attained at the point

$$\begin{aligned} X_0 = \frac{(k-1)(n+2k-2)}{k(n+2k-4)}. \end{aligned}$$

We have

$$\begin{aligned} X_0 - X_2 = X_0-1= -\frac{n-2}{k(n+2k-4)} < 0 \end{aligned}$$

for every \(n \ge 3\) and \(k \ge 2\). This shows that \(X_0 < 1 = X_2 < X_1\); i.e., \(X_2\) and \(X_1\) lie on the left side of \(X_0\). Hence g(X) decreases from \(g(X_1)\) to \(g(X_2)\) when X decreases from \(X_1\) to \(X_2\). This means that G(nks) decreases in s in the whole interval \(I_{2k-1}\). This completes the proof. \(\square \)

Thus we need to consider the sign of the function G(nks) in the end points of the interval \(I_{2k-1}=[t_{k-1}^{1,1},t_k^{1,0}]\). Define the functions

$$\begin{aligned} \varphi _1(n,k) = G\left( n,k,t_{k-1}^{1,1}\right) =g(X_1) \end{aligned}$$

and

$$\begin{aligned} \varphi _2(n,k) = G\left( n,k,t_k^{1,0}\right) =g(X_2). \end{aligned}$$

From the above, we have

$$\begin{aligned} \varphi _1(n,k) > G(n,k,s) > \varphi _2(n,k) \end{aligned}$$

for all \(s \in \left( t_{k-1}^{1,1},t_k^{1,0}\right) \). We calculate \(\varphi _1(n,k)\) and \(\varphi _2(n,k)\).

Lemma 4.17

For every \(n \ge 3\) and \(k \ge 2\), we have

$$\begin{aligned} \varphi _1(n,k)= & {} \frac{ (4-n)k^2 + 4(n-2)k + 2n^2-5n}{(n+2k-4)(n+4k+2)}, \nonumber \\ \varphi _2(n,k)= & {} \frac{(n-2)(n+2k-1)(n-k^2-2)}{(n+4k+2) (n+2k-2)^2}. \end{aligned}$$
(40)

Proof

Plug \(X_1 = \frac{n+2k-2}{k}\) and \(X_2=1\) into g(X). \(\square \)

Theorem 4.18

Let \(n\ge 3\) and \(k \ge 9\) satisfy

$$\begin{aligned} n \le \frac{k^2-4k+5 + \sqrt{k^4-8k^3-6k^2+24k+25}}{4}. \end{aligned}$$

Then \(Q_{2k+3}(n,s)<0\) for all \(s \in \left( t_{k-1}^{1,1},t_k^{1,0} \right) \).

Proof

For \(k \ge 9\), all values of n such that

$$\begin{aligned} 3 \le n \le \frac{k^2-4k+5 + \sqrt{k^4-8k^3-6k^2+24k+25}}{4} \end{aligned}$$

are solutions of the inequality \(\varphi _1(n,k)<0\) (see (40)). Therefore \(G(n,k,s)<0\) for all \(s \in \left( t_k^{1,0},t_k^{1,1}\right) \) in this case. This means that \(Q_{2k+3}(n,s)<0\) for \(s \in \left( t_{k-1}^{1,1}, t_k^{1,0} \right) \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P. et al. Universal Lower Bounds for Potential Energy of Spherical Codes. Constr Approx 44, 385–415 (2016). https://doi.org/10.1007/s00365-016-9327-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9327-5

Keywords

Mathematics Subject Classification

Navigation