Skip to main content
Log in

Reproducing Kernels for Polynomial Null-Solutions of Dirac Operators

  • Published:
Constructive Approximation Aims and scope

Abstract

It is well known that the reproducing kernel of the space of spherical harmonics of fixed homogeneity is given by a Gegenbauer polynomial. By going over to complex variables and restricting to suitable bihomogeneous subspaces, one obtains a reproducing kernel expressed as a Jacobi polynomial, which leads to Koornwinder’s celebrated result on the addition formula. In the present paper, the space of Hermitian monogenics, which is the space of polynomial bihomogeneous null-solutions of a set of two complex conjugated Dirac operators, is considered. The reproducing kernel for this space is obtained and expressed in terms of sums of Jacobi polynomials. This is achieved through use of the underlying Lie superalgebra \(\mathfrak {sl}(1|2)\), combined with the equivalence between the \(L^2\) inner product on the unit sphere and the Fischer inner product. The latter also leads to a new proof in the standard Dirac case related to the Lie superalgebra \(\mathfrak {osp}(1|2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  2. Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia (1975)

    Book  MATH  Google Scholar 

  3. Bezubik, A., Strasburger, A.: On spherical expansions of smooth \(SU(n)\)-zonal functions on the unit sphere in \(\mathbb{C}^n\). J. Math. Anal. Appl. 404, 570–578 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis. Part I: complex structure. Complex Anal. Oper. Theory 1, 341–365 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitean Clifford analysis part II: splitting of h-monogenic equations. Complex Var. Elliptic Equ. 52, 1063–1079 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman (Advanced Publishing Program), Boston (1982)

    MATH  Google Scholar 

  7. Brackx, F., De Schepper, H., Eelbode, D., Souček, V.: The Howe dual pair in Hermitean Clifford analysis. Rev. Mat. Iberoam. 26(2), 449–479 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brackx, F., De Schepper, H., Souček, V.: Fischer decompositions in Euclidean and Hermitean Clifford analysis. Arch. Math. (Brno) 46, 301–321 (2010)

    MATH  MathSciNet  Google Scholar 

  9. Dai, F., Xu, Y.: Approximation Theory and Harmonic Analysis on Spheres and Balls. Springer, London (2013)

    Book  MATH  Google Scholar 

  10. De Bie, H., Ørsted, B., Somberg, P., Souček, V.: The Clifford deformation of the Hermite semigroup. SIGMA 9, 010 (2013). doi:10.3842/SIGMA.2013.010

  11. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. Kluwer, Dordrecht (1992)

    Book  MATH  Google Scholar 

  12. Eelbode, D.: Irreducible \(\mathfrak{sl}(m)\)-modules of Hermitean monogenics. Complex Var. Elliptic Equ. 53(10), 975–987 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eelbode, D.: Stirling numbers and spin-Euler polynomials. Exp. Math. 16, 55–66 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fischer, E.: Über die Differentiationsprozesse der Algebra. J. für Math. 148, 1–78 (1917)

    MATH  Google Scholar 

  15. Koornwinder, T.H.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25, 236–246 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shapiro, H.: An algebraic theorem of E. Fischer, and the holomorphic Goursat problem. Bull. Lond. Math. Soc. 21(6), 513–537 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  18. Szegő, G.: Orthogonal Polynomials. American Mathematical Society, New York (1939)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. De Bie.

Additional information

Communicated by Tom H. Koornwinder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bie, H., Sommen, F. & Wutzig, M. Reproducing Kernels for Polynomial Null-Solutions of Dirac Operators. Constr Approx 44, 339–383 (2016). https://doi.org/10.1007/s00365-016-9326-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9326-6

Keywords

Mathematics Subject Classification

Navigation