Constructive Approximation

, Volume 43, Issue 2, pp 291–309 | Cite as

On Summation of Nonharmonic Fourier Series

Article

Abstract

Let a sequence \(\Lambda \subset {\mathbb {C}}\) be such that the corresponding system of exponential functions \({\mathcal {E}}(\Lambda ):=\left\{ {\text {e}}^{i\lambda t}\right\} _{\lambda \in \Lambda }\) is complete and minimal in \(L^2(-\pi ,\pi )\), and thus each function \(f\in L^2(-\pi ,\pi )\) corresponds to a nonharmonic Fourier series in \({\mathcal {E}}(\Lambda )\). We prove that if the generating function \(G\) of \(\Lambda \) satisfies the Muckenhoupt \((A_2)\) condition on \({\mathbb {R}}\), then this series admits a linear summation method. Recent results show that the \((A_2)\) condition cannot be omitted.

Keywords

Nonharmonic Fourier series Summation methods  Paley–Wiener spaces Muckenhoupt condition Lagrange interpolation 

Mathematics Subject Classification

42A24 42A63 30D10 

References

  1. 1.
    Baranov, A., Belov, Y., Borichev, A.: Hereditary completeness for systems of exponentials and reproducing kernels. Adv. Math. 235, 525–554 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Gubreev, G., Tarasenko, A.: Spectral decomposition of model operators in de Branges spaces. Math. Sb. (Russian) 201(11), 41–76 (2010). translation in Sb. Math. 201 (2010), no. 11–12, 1599–1634MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hruscev, S.V., Nikolskii, N.K., Pavlov, B.S.: Unconditional bases of exponentials and of reproducing kernels. In: Havin, V.P., Nikolski, N.K. (eds.) Complex Analysis and Spectral Theory (Leningrad, 1979/1980). Lecture Notes in Mathematics, vol. 864, pp. 214–335. Springer, Berlin, New York (1981)Google Scholar
  4. 4.
    Levin, B.Y.: Lectures on Entire Functions, Translations of Mathematical Monographs, vol. 150. AMS, Providence (1996)Google Scholar
  5. 5.
    Lyubarskii, Yu., Seip, K.: Complete interpolating sequences for Paley–Wiener spaces and Muckenhoupt’s \((A_p)\) condition. Rev. Math. Iberoam. 13(2), 361–376 (1997)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Minkin, A.M.: Reflection of exponents and unconditional bases of exponentials. St. Petersburg Math. J. 3, 1043–1068 (1992)MathSciNetMATHGoogle Scholar
  7. 7.
    Pavlov, B.S.: The basis property of a system of exponentials and the condition of Muckenhoupt. (Russian). Dokl. Akad. Nauk SSSR 247, 37–40 (1979). English translation in Soviet Mathematics Doklady 20 (1979)Google Scholar
  8. 8.
    Vasjunin, V.: Bases from eigensubspaces, and nonclassical interpolation problems. Funkc. Anal. Prilozhen (Russian) 9(4), 65–66 (1975)MathSciNetGoogle Scholar
  9. 9.
    Young, R.: On complete biorthogonal system. Proc. Am. Math. Soc. 83(3), 537–540 (1981)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Chebyshev LaboratorySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Department of Mathematical SciencesNorwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations