Abstract
Given a sequence of polynomials \((p_n)_n\), an algebra of operators \({\mathcal A}\) acting in the linear space of polynomials, and an operator \(D_p\in {\mathcal A}\) with \(D_p(p_n)=np_n\), we form a new sequence of polynomials \((q_n)_n\) by considering a linear combination of \(m+1\) consecutive \(p_n\): \(q_n=p_n+\sum _{j=1}^m\beta _{n,j}p_{n-j}\). Using the concept of \(\mathcal {D}\)-operator, we determine the structure of the sequences \(\beta _{n,j}, j=1,\ldots ,m,\) so that the polynomials \((q_n)_n\) are eigenfunctions of an operator in the algebra \({\mathcal A}\). As an application, from the classical discrete families of Charlier, Meixner, and Krawtchouk, we construct orthogonal polynomials \((q_n)_n\) which are also eigenfunctions of higher-order difference operators.
Similar content being viewed by others
References
Álvarez-Nodarse, R., Durán, A.J.: Using \({\cal D}\)-operators to construct orthogonal polynomials satisfying higher order \(q\)-difference equations (submitted). arXiv:1309.3296
Bavinck, H., van Haeringen, H.: Difference equations for generalizations of Meixner polynomials. J. Math. Anal. Appl. 184, 453–463 (1994)
Bavinck, H., Koekoek, R.: On a difference equation for generalizations of Charlier polynomials. J. Approx. Theory 81, 195–206 (1995)
Chihara, T.: An Introduction to Orthogonal Polynomials, Mathematics and its Applications, vol. 13. Gordon and Breach Science Publishers, New York (1978)
Christoffel, E.B.: Über die Gaussische Quadratur und eine Verallgemeinerung derselben. J. Reine Angew. Math. 55, 61–82 (1858)
Duistermaat, J.J., Grünbaum, F.A.: Differential equations in the spectral parameter. Commun. Math. Phys. 103, 177–240 (1986)
Durán, A.J.: The Stieltjes moments problem for rapidly decreasing functions. Proc. Am. Math. Soc. 107, 731–741 (1989)
Durán, A.J.: Orthogonal polynomials satisfying higher order difference equations. Constr. Approx. 36, 459–486 (2012)
Durán, A.J.: Using \({\cal D}\)-operators to construct orthogonal polynomials satisfying higher order difference or differential equations. J. Approx. Theory 174, 10–53 (2013)
Durán, A.J., de la Iglesia, M.D.: Constructing Krall-Hahn orthogonal polynomials (submitted). arXiv:1407.7569
Geronimus, YaL: On the polynomials orthogonal with respect to a given number sequence. Zap. Mat. Otdel. Khar’kov Univers. i Nil Mat. i Mehan. 17, 3–18 (1940)
Geronimus, YaL: On the polynomials orthogonal with respect to a given number sequence. and a theorem by W. Hahn, lzv. Akad. Nauk SSSR 4, 215–228 (1940)
Grünbaum, F.A., Haine, L.: Orthogonal polynomials satisfying differential equations: the role of the Darboux transformation. In: Levi, D., Vinet, L., Winternitz, P. (eds.) Symmetries and Integrability of Differential Equations, CRM Proceedings of Lecture Notes, vol. 9, pp. 143–154. Amer. Math. Soc. Providence, RI (1996)
Grünbaum, F.A., Haine, L.: Bispectral Darboux transformations: an extension of the Krall polynomials. Int. Math. Res. Not. 8, 359–392 (1997)
Grünbaum, F.A., Haine, L., Horozov, E.: Some functions that generalize the Krall–Laguerre polynomials. J. Comput. Appl. Math. 106, 271–297 (1999)
Grünbaum, F.A., Yakimov, M.: Discrete bispectral Darboux transformations from Jacobi operators. Pac. J. Math. 204, 395–431 (2002)
Haine, L., Iliev, P.: Askey–Wilson type functions with bound state. Ramanujan J. 11, 285–329 (2006)
Iliev, P.: Krall–Jacobi commutative algebras of partial differential operators. J. Math. Pures Appl. 96, 446–461 (2011)
Iliev, P.: Krall–Laguerre commutative algebras of ordinary differential operators. Ann. Mat. Pur. Appl. 192, 203–224 (2013)
Koekoek, J., Koekoek, R.: On a differential equation for Koornwinder’s generalized Laguerre polynomials. Proc. Am. Math. Soc. 112, 1045–1054 (1991)
Koekoek, R.: Differential equations for symmetric generalized ultraspherical polynomials. Trans. Am. Math. Soc. 345, 47–72 (1994)
Koekoek, J., Koekoek, R.: Differential equations for generalized Jacobi polynomials. J. Comput. Appl. Math. 126, 1–31 (2000)
Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric orthogonal polynomials and their \(q\)-analogues. With a foreword by Tom H. Koornwinder. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2010)
Krall, H.L.: On orthogonal polynomials satisfying a certain fourth order differential equation. The Pennsylvania State College Studies, No. 6 (1940)
Littlejohn, L.L.: The Krall polynomials: a new class of orthogonal polynomials. Quaest. Math. 5, 255–265 (1982)
Littlejohn, L.L.: An application of a new theorem on orthogonal polynomials and differential equations. Quaest. Math. 10, 49–61 (1986)
Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, New York (1995)
Nikiforov, A.F., Suslov, S.K., Uvarov, V.B.: Classical orthogonal polynomials of a discrete variable. Springer, Berlin (1991)
Szegö, G.: Orthogonal Polynomials, vol. XXIII, 4th edn. American Mathematical Society, Colloquium Publications, Providence, R.I. (1975)
Zhedanov, A.: Rational spectral transformations and orthogonal polynomials. J. Comput. Appl. Math. 85, 67–86 (1997)
Zhedanov, A.: A method of constructing Krall’s polynomials. J. Comput. Appl. Math. 107, 1–20 (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Tom H. Koornwinder.
Partially supported by MTM2012-36732-C03-03 (Ministerio de Economía y Competitividad), FQM-262, FQM-4643, FQM-7276 (Junta de Andalucía) and Feder Funds (European Union).
The authors would like to thank an anonymous referee for his/her comments and suggestions.
Rights and permissions
About this article
Cite this article
Durán, A.J., de la Iglesia, M.D. Constructing Bispectral Orthogonal Polynomials from the Classical Discrete Families of Charlier, Meixner and Krawtchouk. Constr Approx 41, 49–91 (2015). https://doi.org/10.1007/s00365-014-9251-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00365-014-9251-5
Keywords
- Orthogonal polynomials
- Difference operators and equations
- Charlier polynomials
- Meixner polynomials
- Krawtchouk polynomials
- Krall polynomials