Skip to main content

Improved Exponential Convergence Rates by Oversampling Near the Boundary

Abstract

Sampling inequalities for smooth functions bound a continuous norm in terms of a discretized norm and an error term that tends to zero exponentially as the discrete data set becomes dense. Improved estimates are derived for discrete point sets that cluster near the boundary, in particular for scattered point sets that are distributed quadratically in a boundary layer, and for tensorized Chebyshev grids. If applied to residuals of stable reconstruction processes, such inequalities yield exponential convergence orders. Our results agree with the observation that exponential deterministic approximation rates are often improved globally if the data sets are distributed more densely near the boundary.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Agadzhanov, A.N.: Functional properties of Sobolev spaces of infinite order. Sov. Math. Dokl. 38(1), 88–92 (1989)

    MATH  MathSciNet  Google Scholar 

  2. 2.

    Arcangéli, R., López di Silanes, M.C., Torrens, J.J.: An extension of a bound for functions in Sobolev spaces, with applications to (m,s)-spline interpolation and smoothing. Numer. Math. 107(2), 181–211 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    Arcangéli, R., López di Silanes, M.C., Torrens, J.J.: Estimates for functions in Sobolev spaces defined on unbounded domains. J. Approx. Theory 161(1), 198–212 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. 4.

    Arcangéli, R., López di Silanes, M.C., Torrens, J.J.: Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data. Numer. Math. 121, 587–608 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    Borwein, P., Erdelyi, T.: Polynomials and Polynomial Inequalities. Springer, New York (1995)

    Book  MATH  Google Scholar 

  6. 6.

    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  7. 7.

    Buhmann, M.D.: Multivariate cardinal interpolation with radial-basis functions. Constr. Approx. 6, 225–255 (1990)

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  9. 9.

    Buhmann, M.D., Powell, M.J.D.: Radial basis function interpolation on an infiniter egular grid. In: Mason, J.C., Cox, M.G. (eds.) Algorithms for Approximation II, pp. 146–169. Chapman and Hall, London (1990)

    Chapter  Google Scholar 

  10. 10.

    Cheney, E.W.: An Introduction to Approximation Theory. McGraw-Hill, New York (1966)

    Google Scholar 

  11. 11.

    De Vore, R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren der mathematischen Wisenschaften. Springer, Berlin (1993)

    Google Scholar 

  12. 12.

    Duchon, J.: Sur l’erreur d’ interpolation des fonctions de plusieurs variables par les Dm-splines. Rev. Française Automat. Informat. Rech. Opèr. Anal. Numer. 12, 325–334 (1978)

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behaviour of radial basis function approximation near boundaries. Comput. Math. Appl. 43, 473–490 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. 14.

    Hangelbroek, T.: Error estimates for thin plate spline approximation in the disk. Constr. Approx. 28, 27–59 (2008)

    MATH  MathSciNet  Google Scholar 

  15. 15.

    Jetter, K., Stöckler, J., Ward, J.D.: Norming sets and scattered data approximation on spheres. In: Approximation Theory IX, Vol. II: Computational Aspects, pp. 137–144 (1998). Vanderbilt University Press

    Google Scholar 

  16. 16.

    Johnson, M.J.: A bound on the approximation order of surface splines. Constr. Approx. 14, 429–438 (1998)

    MATH  MathSciNet  Google Scholar 

  17. 17.

    Johnson, M.J.: The l p -approximation order of surface spline interpolation for 1≤p≤2. Constr. Approx. 20, 303–324 (2004)

    MATH  MathSciNet  Google Scholar 

  18. 18.

    Krebs, J.: Support vector regression for the solution of linear integral equations. Inverse Probl. 27(6), 065007 (2011)

    Article  MathSciNet  Google Scholar 

  19. 19.

    Krebs, J., Louis, A.K., Wendland, H.: Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization. J. Inverse Ill-Posed Probl. 17, 845–869 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20.

    Madych, W.R.: An estimate for multivariate interpolation II. J. Approx. Theory 142, 116–128 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. 21.

    Madych, W.R., Nelson, S.A.: Multivariate interpolation and conditionally positive definite functions. J. Approx. Theory Appl. 4, 77–89 (1988)

    MATH  MathSciNet  Google Scholar 

  22. 22.

    Madych, W.R., Nelson, S.A.: Multivariate interpolation and conditionally positive definite functions II. Math. Comput. 54, 211–230 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. 23.

    Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multi quadric interpolation. J. Approx. Theory 70, 94–114 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. 24.

    De Marchi, S., Schaback, R.: Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155–161 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. 25.

    Matveev, O.: On a method for interpolating functions on chaotic nets. Math. Notes 62, 339–349 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  26. 26.

    Narcowich, F.J., Ward, J.D., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 743–763 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. 27.

    Rieger, C.: Sampling inequalities and applications. PhD thesis, Universität Göttingen (2008), available online at http://hdl.handle.net/11858/00-1735-0000-0006-B3B9-0

  28. 28.

    Rieger, C., Schaback, R., Zwicknagl, B.: Sampling and stability. In: Mathematical Methods for Curves and Surfaces. Lecture Notes in Computer Science, vol. 5862, pp. 347–369. Springer, New York (2010)

    Chapter  Google Scholar 

  29. 29.

    Rieger, C., Zwicknagl, B.: Deterministic error analysis of support vector machines and related regularized kernel methods. J. Mach. Learn. Res. 10, 2115–2132 (2009)

    MATH  MathSciNet  Google Scholar 

  30. 30.

    Rieger, C., Zwicknagl, B.: Sampling inequalities for infinitely smooth functions, with applications to interpolation and machine learning. Adv. Comput. Math. 32(1), 103–129 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. 31.

    Schaback, R.: Comparison of radial basis function interpolants. In: Jetter, K., Schumaker, L.L., Utreras, F. (eds.) Multivariate Approximations: From CAGD to Wavelets, pp. 293–305. World Scientific, Singapore (1993)

    Chapter  Google Scholar 

  32. 32.

    Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15, 543–639 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. 33.

    Wendland, H.: Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal. 21, 285–300 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. 34.

    Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  35. 35.

    Wendland, H., Rieger, C.: Approximate interpolation with applications to selecting smoothing parameters. Numer. Math. 101, 729–748 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. 36.

    Zhang, X., Jiang, X.: Numerical analyses of the boundary effect of radial basis functions in 3d surface reconstruction. Numer. Algorithms 47, 327–339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. 37.

    Zwicknagl, B.: Power series kernels. Constr. Approx. 29, 61–84 (2009)

    MATH  MathSciNet  Google Scholar 

  38. 38.

    Zwicknagl, B., Schaback, R.: Interpolation and approximation in Taylor spaces. J. Approx. Theory 171, 65–83 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank R. Schaback, M. Griebel, and T. Hangelbroek for helpful discussions, and the referees for their careful reading and helpful comments. Some preliminary results are contained in C.R.’s PhD thesis defended at the University of Göttingen (see [27]). C.R. acknowledges partial support by the DFG through the Collaborative Research Centers (SFB) 611 and 1060, and the Hausdorff Center for Mathematics. B.Z. warmly thanks the Center for Nonlinear Analysis (NSF Grant No. DMS-0635983), where part of this research was carried out. Her research was partly funded by a postdoctoral fellowship of the National Science Foundation under Grant No. DMS-0905778.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Barbara Zwicknagl.

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rieger, C., Zwicknagl, B. Improved Exponential Convergence Rates by Oversampling Near the Boundary. Constr Approx 39, 323–341 (2014). https://doi.org/10.1007/s00365-013-9211-5

Download citation

Keywords

  • Sampling inequalities
  • Convergence orders
  • Boundary effect
  • Smooth kernels
  • Gaussian
  • Inverse multiquadrics
  • Chebyshev nodes

Mathematics Subject Classification

  • 41A05
  • 41A25
  • 41A63
  • 65D05