Constructive Approximation

, Volume 35, Issue 1, pp 21–72 | Cite as

Construction of Compactly Supported Shearlet Frames

  • Pisamai Kittipoom
  • Gitta Kutyniok
  • Wang-Q Lim


Shearlet tight frames have been extensively studied in recent years due to their optimal approximation properties of cartoon-like images and their unified treatment of the continuum and digital settings. However, these studies only concerned shearlet tight frames generated by a band-limited shearlet, whereas for practical purposes compact support in spatial domain is crucial.

In this paper, we focus on cone-adapted shearlet systems that—accounting for stability questions—are associated with a general irregular set of parameters. We first derive sufficient conditions for such cone-adapted irregular shearlet systems to form a frame and provide explicit estimates for their frame bounds. Secondly, exploring these results and using specifically designed wavelet scaling functions and filters, we construct a family of cone-adapted shearlet frames consisting of compactly supported shearlets. For this family, we derive estimates for the ratio of their frame bounds and prove that they provide optimally sparse approximations of cartoon-like images. Finally, we discuss an implementation strategy for the shearlet transform based on compactly supported shearlets. We further show that an optimally sparse N-term approximation of an M×M cartoon-like image can be derived with asymptotic computational cost O(M 2(1+τ)) for some positive constant τ depending on M and N.


Curvilinear discontinuities Edges Filters Nonlinear approximation Optimal sparsity Scaling functions Shearlets Wavelets 

Mathematics Subject Classification (2000)

42C40 42C15 65T60 65T99 94A08 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Candés, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C 2 singularities. Commun. Pure Appl. Math. 56, 216–266 (2004) Google Scholar
  2. 2.
    Candés, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. SIAM Multiscale Model. Simul. 5, 861–899 (2006) CrossRefzbMATHGoogle Scholar
  3. 3.
    Cunha, A., Zhou, J., Do, M.: The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans. Image Process. 15, 3089–3101 (2006) CrossRefGoogle Scholar
  4. 4.
    Dahlke, S., Kutyniok, G., Steidl, G., Teschke, G.: Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmon. Anal. 27, 195–214 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992) CrossRefzbMATHGoogle Scholar
  7. 7.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Donoho, D.L.: Sparse components of images and optimal atomic decomposition. Constr. Approx. 17, 353–382 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Donoho, D.L., Kutyniok, G.: Geometric separation using a wavelet-shearlet dictionary. Proc., SampTA’09, Marseille, France (2009) Google Scholar
  10. 10.
    Donoho, D.L., Kutyniok, G.: Microlocal Analysis of the Geometric Separation Problems. Preprint Google Scholar
  11. 11.
    Durand, S.: M-band filtering and non-redundant directional wavelets. Appl. Comput. Harmon. Anal. 22, 124–139 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Easley, G., Labate, D., Lim, W.-Q.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25, 25–46 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Grohs, P.: Continuous shearlet frames and resolution of the wavefront set. Preprint Google Scholar
  14. 14.
    Guo, K., Kutyniok, G., Labate, D.: Sparse Multidimensional Representations Using Anisotropic Dilation and Shear Operators, Wavelets and Splines (Athens, GA, 2005), pp. 189–201. Nashboro Press, Nashville (2006) Google Scholar
  15. 15.
    Guo, K., Labate, D.: Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal. 39, 298–318 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Guo, K., Labate, D., Lim, W.-Q: Edge analysis and identification using the continuous shearlet transform. Appl. Comput. Harmon. Anal. 27, 24–46 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kittipoom, P., Kutyniok, G., Lim, W.-Q: Irregular shearlet frames: geometry and approximation properties. J. Fourier Anal. Appl. 17, 604–639 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kutyniok, G., Labate, D.: Construction of regular and irregular shearlets. J. Wavelet Theory Appl. 1, 1–10 (2007) Google Scholar
  19. 19.
    Kutyniok, G., Labate, D.: Resolution of the wavefront set using continuous shearlets. Trans. Am. Math. Soc. 361, 2719–2754 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Kutyniok, G., Lim, W.-Q: Compactly supported shearlets are optimally sparse. J. Approx. Theory 163, 1564–1589 (2011) CrossRefzbMATHGoogle Scholar
  21. 21.
    Kutyniok, G., Shahram, M., Donoho, D.L.: Development of a digital shearlet transform based on pseudo-polar FFT. In: Van De Ville, D., Goyal, V.K., Papadakis, M. (eds.) Wavelets XIII, San Diego, CA, 2009. SPIE Proc., vol. 7446, pp. 74460B-1–74460B-13. SPIE, Bellingham (2009) Google Scholar
  22. 22.
    Labate, D., Lim, W.-Q, Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. Wavelets XI, San Diego, CA, 2005. SPIE Proc., vol. 5914, pp. 254–262. SPIE, Bellingham (2005) Google Scholar
  23. 23.
    Lim, W.-Q: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19, 1166–1180 (2010) CrossRefMathSciNetGoogle Scholar
  24. 24.
    Lu, Y., Do, M.N.: CRISP-contourlets: a critically sampled directional multiresolution image representation. In: Papadakis, M., Laine, A.F., Unser, M.A. (eds.) Wavelets X, San Diego, CA, 2003. SPIE Proc. SPIE, Bellingham (2003) Google Scholar
  25. 25.
    Smith, H.F.: A hardy space for Fourier integral operators. J. Geom. Anal. 8, 629–653 Google Scholar
  26. 26.
    Yang, D., Zhou, X.: Irregular wavelet frames on L 2(ℝn). Sci. China Ser. A. Math. 48, 277–287 (2005) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of SciencePrince of Songkla UniversityHat YaiThailand
  2. 2.Department of MathematicsTechnische Universität BerlinBerlinGermany

Personalised recommendations