Skip to main content
Log in

Compactly Supported, Piecewise Polyharmonic Radial Functions with Prescribed Regularity

  • Published:
Constructive Approximation Aims and scope

Abstract

A compactly supported radially symmetric function \(\varPhi :\Bbb{R}^{d}\to \Bbb{R}\) is said to have Sobolev regularity k if there exist constants BA>0 such that the Fourier transform of Φ satisfies

$$A\bigl(1+\Vert\omega\Vert ^2\bigr)^{-k} \leq\widehat{\varPhi }(\omega )\leq B\bigl (1+\Vert\omega\Vert ^2\bigr)^{-k},\quad\omega\in \Bbb{R}^d.$$

Such functions are useful in radial basis function methods because the resulting native space will correspond to the Sobolev space \(W_{2}^{k}(\Bbb{R}^{d})\). For even dimensions d and integers kd/4, we construct piecewise polyharmonic radial functions with Sobolev regularity k. Two families are actually constructed. In the first, the functions have k nontrivial pieces, while in the second, exactly one nontrivial piece. We also explain, in terms of regularity, the effect of restricting Φ to a lower dimensional space \(\Bbb{R}^{d-2\ell}\) of the same parity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, Boston (1975)

    MATH  Google Scholar 

  2. Al-Rashdan, A., Johnson, M.J.: Minimal degree univariate piecewise polynomials with prescribed Sobolev regularity. J. Approx. Theory (to appear)

  3. de Boor, C.: A Practical Guide to Splines. Applied Mathematical Sciences, vol. 27. Springer, New York (1978)

    Book  MATH  Google Scholar 

  4. Buhmann, M.D.: Radial functions on compact support. Proc. Edinb. Math. Soc. 41, 33–46 (1998)

    Article  MathSciNet  Google Scholar 

  5. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  6. Gasper, G.: Positive integrals of Bessel functions. SIAM J. Math. Anal. 6, 868–881 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gneiting, T.: On α-symmetric multivariate characteristic functions. J. Multivar. Anal. 64, 131–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gneiting, T.: Compactly supported correlation functions. J. Multivar. Anal. 83, 493–508 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson, M.J.: A bound on the approximation order of surface splines. Constr. Approx. 14, 429–438 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matheron, G.: Les variables régionalisées et leur estimation. Masson, Paris (1965)

    Google Scholar 

  11. Royden, H.L.: Real Analysis, 3rd edn. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  12. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  13. Rudin, W.: Real & Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  14. Schaback, R.: Native Hilbert Spaces for Radial Basis Functions I. International Series of Numerical Mathematics, vol. 132. Birkhäuser, Basel (1999), pp. 255–282

    Google Scholar 

  15. Schaback, R.: The missing Wendland functions. Adv. Comput. Math. 34, 67–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schaback, R., Wu, Z.: Operators on radial basis functions. J. Comput. Appl. Math. 73, 257–270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  18. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wendland, H.: Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93, 258–272 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wendland, H.: On the smoothness of positive definite and radial functions. J. Comput. Appl. Math. 101, 177–188 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  22. Wu, Z.: Characterization of positive definite radial functions. In: Mathematical Methods for Curves and Surfaces, pp. 573–578. Vanderbilt Univ. Press, Nashville (1995)

    Google Scholar 

  23. Wu, Z.: Compactly supported positive definite radial functions. Adv. Comput. Math. 4, 283–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Johnson.

Additional information

Communicated by Edward B. Saff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.J. Compactly Supported, Piecewise Polyharmonic Radial Functions with Prescribed Regularity. Constr Approx 35, 201–223 (2012). https://doi.org/10.1007/s00365-011-9141-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-011-9141-z

Keywords

Mathematics Subject Classification (2010)

Navigation