Skip to main content
Log in

Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation

  • Published:
Constructive Approximation Aims and scope

Abstract

We study the approximation of functions in weighted Sobolev spaces of mixed order by anisotropic tensor products of biorthogonal, compactly supported wavelets. As a main result, we characterize these spaces in terms of wavelet coefficients, which also enables us to explicitly construct approximations. In particular, we derive approximation rates for functions in exponentially weighted Sobolev spaces discretized on optimized general sparse grids. Under certain regularity assumptions, the rate of convergence is independent of the number of dimensions. We apply these results to the electronic Schrödinger equation and obtain a convergence rate which is independent of the number of electrons; numerical results for the helium atom are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th edn. Wiley, New York (1972)

    MATH  Google Scholar 

  2. Amanov, T.I.: Spaces of Differentiable Functions with Dominating Mixed Derivative. Nauka Kazakh. SSR, Alma Ata (1976) (in Russian)

    Google Scholar 

  3. Babenko, K.: Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Sov. Math. Dokl. 1, 672–675 (1960). Translation from the Russian appeared Dokl. Akad. Nauk SSSR 132, 1231–1234 (1960)

    MathSciNet  MATH  Google Scholar 

  4. Bachmayr, M.: Hyperbolic wavelet discretization of the two-electron Schrödinger equation in an explicitly correlated formulation. Technical report, AICES, RWTH Aachen, Preprint AICES-2010/06-2 (2010)

  5. Bergh, J., Löfström, J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  6. Bungartz, H.-J., Griebel, M.: A note on the complexity of solving Poisson’s equation for spaces of bounded mixed derivatives. J. Complex. 15, 167–199 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chui, C.K., Wang, J.Z.: On compactly supported spline wavelets and a duality principle. Trans. Am. Math. Soc. 330, 903–916 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, A.: Numerical Analysis of Wavelet Methods. Amsterdam, Elsevier (2003)

    MATH  Google Scholar 

  10. Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, A., Dahmen, W., DeVore, R.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70, 27–75 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  14. Delvos, F.-J.: d-variate Boolean interpolation. J. Approx. Theory 34, 99–114 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. DeVore, R.A., Konyagin, S.V., Temlyakov, V.N.: Hyperbolic wavelet approximation. Constr. Approx. 14, 1–26 (1998)

    Article  MathSciNet  Google Scholar 

  16. Dijkema, T.J.: Adaptive tensor product wavelet methods for solving PDEs. PhD thesis, Universiteit Utrecht (2009)

  17. Donovan, G.C., Geronimo, J.S., Hardin, D.P.: Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets. SIAM J. Math. Anal. 27, 1791–1815 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Flad, H., Hackbusch, W., Kolb, D., Schneider, R.: Wavelet approximation of correlated wave functions I. Basics. J. Chem. Phys. 116, 9641–9657 (2002)

    Article  Google Scholar 

  19. Flad, H.-J., Hackbusch, W., Luo, H., Kolb, D., Koprucki, T.: Wavelet approximation of correlated wave functions. II. Hyperbolic wavelets and adaptive approximation schemes. J. Chem. Phys. 117, 3625–3638 (2002)

    Article  Google Scholar 

  20. Garcke, J., Griebel, M.: On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165, 694–716 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Griebel, M., Hamaekers, J.: Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schrödinger equation. Z. Phys. Chem. 224, 527–543 (2010)

    Article  Google Scholar 

  22. Griebel, M., Knapek, S.: Optimized tensor-product approximation spaces. Constr. Approx. 16, 525–540 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Griebel, M., Knapek, S.: Optimized general sparse grid approximation spaces for operator equations. Math. Comput. 78, 2223–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hamaekers, J.: Tensor product multiscale many-particle spaces with finite-order weights for the electronic Schödinger equation. PhD thesis, Rheinische-Friedrich-Wilhelms-Universität Bonn (2009)

  25. Hansen, M.: Nonlinear approximation and function spaces of dominating mixed smoothness. PhD thesis, Friedrich-Schiller-Universität Jena (2010)

  26. Izuki, M., Sawano, Y.: Wavelet bases in the weighted Besov and Triebel–Lizorkin spaces with \(A^{\mathrm{loc}}_{p}\)-weights. J. Approx. Theory 161, 656–673 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kozlov, V.A., Mazýa, V.G., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  28. Mallat, S.G.: Multiresolution approximations and wavelet orthonormal bases of \(L\sp2(\Bbb{R})\). Trans. Am. Math. Soc. 315, 69–87 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Nikol’skiĭ, S.M.: Approximation of Functions of Several Variables and Imbedding Theorems. Springer, New York (1975). Translation from the Russian (Izdat. “Nauka”, Moscow, 1969)

    Google Scholar 

  30. Oswald, P.: On N-term approximation by Haar functions in H s-norms. J. Math. Sci. 155, 109–128 (2008). Translation from Russian appeared Sovrem. Mat., Fundam. Napravl. 25, 106–125 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Peetre, J.: A Theory of Interpolation of Normed Spaces. Notas de Matemática, vol. 39. Instituto de Matemática Pura e Aplicada, Rio de Janeiro (1963)

    Google Scholar 

  32. Peetre, J.: Nouvelles propriétés d’espaces d’interpolation. C. R. Acad. Sci., Paris 256, 1424–1426 (1963)

    MathSciNet  MATH  Google Scholar 

  33. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I: Functional Analysis, rev. and enl. edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  34. Rychkov, V.S.: Littlewood–Paley theory and function spaces with \(A^{\mathrm{loc}}_{p}\) weights. Math. Nachr. 224, 145–180 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schmeisser, H.-J., Triebel, H.: Topics in Fourier Analysis and Function Spaces. Wiley, Chichester (1987)

    Google Scholar 

  36. Schott, T.: Function spaces with exponential weights I. Math. Nachr. 189, 221–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schwab, C., Stevenson, R.: Adaptive wavelet algorithms for elliptic PDE’s on product domains. Math. Comput. 77, 71–92 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sickel, W., Ullrich, T.: Tensor products of Sobolev–Besov spaces and applications to approximation from the hyperbolic cross. J. Approx. Theory 161(2), 748–786 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sims, J.S., Hagstrom, S.A.: High-precision Hy-CI variational calculations for the ground state of neutral helium and helium-like ions. Int. J. Quant. Chem. 90, 1600–1609 (2002)

    Article  Google Scholar 

  40. Smolyak, S.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963) (in Russian)

    Google Scholar 

  41. Temlyakov, V.N.: Approximation of Periodic Functions. Nova Science Publishers Inc., Commack (1993)

    MATH  Google Scholar 

  42. Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  43. Vybíral, J.: Function spaces with dominating mixed smoothness. Diss. Math. 436, 1–73 (2006)

    MATH  Google Scholar 

  44. Yserentant, H.: Regularity and Approximability of Electronic Wave Functions. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  45. Yserentant, H.: The mixed regularity of electronic wave functions multiplied by explicit correlation factors. Technical report, DFG-Schwerpunktprogramm 1324, Preprint 49 (2010)

  46. Zeiser, A.: Direkte Diskretisierung der Schrödingergleichung auf dünnen Gittern. PhD thesis, TU Berlin (2010)

  47. Zeiser, A.: Fast matrix-vector multiplication in the sparse-grid Galerkin method. J. Sci. Comput. 47, 328–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zenger, C.: Sparse grids. In: Hachbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations. Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Wiesbaden (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Zeiser.

Additional information

Communicated by Peter Oswald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeiser, A. Wavelet Approximation in Weighted Sobolev Spaces of Mixed Order with Applications to the Electronic Schrödinger Equation. Constr Approx 35, 293–322 (2012). https://doi.org/10.1007/s00365-011-9138-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-011-9138-7

Keywords

Mathematics Subject Classification (2000)

Navigation