Skip to main content

Advertisement

Log in

On the Problem of Parameter Estimation in Exponential Sums

  • Published:
Constructive Approximation Aims and scope

Abstract

Let I≥1 be an integer, ω 0=0<ω 1<⋯<ω I π, and for j=0,…,I, a j ∈ℂ, \(a_{-j}={\overline{{a_{j}}}}\), ω j =−ω j , and \(a_{j}\not=0\) if \(j\not=0\). We consider the following problem: Given finitely many noisy samples of an exponential sum of the form

$$\tilde{x}(k)= \sum_{j=-I}^I a_j\exp(-i\omega _jk) +\epsilon (k), \quad k=-2N,\ldots,2N,$$

where ϵ(k) are random variables with mean zero, each in the range [−ϵ,ϵ] for some ϵ>0, determine approximately the frequencies ω j . We combine the features of several recent works to use the available information to construct the moments \(\tilde{y}_{N}(k)\) of a positive measure on the unit circle. In the absence of noise, the support of this measure is exactly \(\{\exp(-i\omega _{j}) : a_{j}\not=0\}\). This support can be recovered as the zeros of the monic orthogonal polynomial of an appropriate degree on the unit circle with respect to this measure. In the presence of noise, this orthogonal polynomial structure allows us to provide error bounds in terms of ϵ and N. It is not our intention to propose a new algorithm. Instead, we prove that a preprocessing of the raw moments \(\tilde{x}(k)\) to obtain \(\tilde{y}_{N}(k)\) enables us to obtain rigorous performance guarantees for existing algorithms. We demonstrate also that the proposed preprocessing enhances the performance of existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beylkin, G., Monzón, L.: On approximations of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 17–48 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation, vol. 1. Academic Press, New York (1971)

    Book  MATH  Google Scholar 

  3. Eckhoff, K.S.: Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64, 671–690 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7(1), 101–135 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Golub, G.H., van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  6. Hickernell, F.J., Sloan, I.H., Wasilkowski, G.W.: On tractability of weighted integration over bounded and unbounded regions in R s. Math. Comput. 73(248), 1903–1911 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jones, W.B., Njåstad, O., Saff, E.B.: Szegö polynomials associated with Wiener–Levinson filters. J. Comput. Appl. Math. 32, 387–406 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Katznelson, Y.: An Introduction to Harmonic Analysis. Wiley, New York (1968)

    MATH  Google Scholar 

  9. Krim, H., Vidberg, M.: Sensor array signal processing: two decades later. Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, LIDS P-2282 (1995)

  10. Lanczos, C.: Applied Analysis. Dover, New York (1988)

    Google Scholar 

  11. Markel, J.D., Gray, A.N. Jr.: Linear Prediction of Speech. Springer, New York (1976)

    Book  MATH  Google Scholar 

  12. Mhaskar, H.N.: On the tractability of multivariate integration and approximation by neural networks. J. Complex. 20(4), 561–590 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mhaskar, H.N., Prestin, J.: On the detection of singularities of a periodic function. Adv. Comput. Math. 12, 95–131 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mhaskar, H.N., Prestin, J.: On local smoothness classes of periodic functions. J. Fourier Anal. Appl. 11(3), 353–373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pan, K.C.: A refined Wiener–Levinson method in frequency analysis. SIAM J. Math. Anal. 27(5), 1448–1453 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pan, K.C., Saff, E.B.: Asymptotics for zeros of Szegö polynomials associated with trigonometric polynomial signals. J. Approx. Theory 71(3), 239–251 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pillai, S.U.: Array Signal Processing. Springer, New York (1989)

    Book  Google Scholar 

  18. Pollard, D.: Convergence of Stochastic Processes. Springer, New York (1984)

    Book  MATH  Google Scholar 

  19. Potts, D., Tasche, M.: Parameter estimation for exponential sums by approximate Prony method. Signal Process. 90, 1631–1642 (2010)

    Article  MATH  Google Scholar 

  20. Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  21. Roy, R., Kalaith, T.: ESPRIT—estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    Article  Google Scholar 

  22. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 1, Classical Theory. American Mathematical Society Colloquium Publications, Part 1, vol. 54. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Filbir.

Additional information

Communicated by Edward B. Saff.

Dedicated to the memory of Franz Peherstorfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filbir, F., Mhaskar, H.N. & Prestin, J. On the Problem of Parameter Estimation in Exponential Sums. Constr Approx 35, 323–343 (2012). https://doi.org/10.1007/s00365-011-9136-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-011-9136-9

Keywords

Mathematics Subject Classification

Navigation