Skip to main content
Log in

Existence of Universal Taylor Series for Nonsimply Connected Domains

  • Published:
Constructive Approximation Aims and scope

Abstract

It is known that, for any simply connected proper subdomain Ω of the complex plane and any point ζ in Ω, there are holomorphic functions on Ω that possess “universal” Taylor series expansions about ζ; that is, partial sums of the Taylor series approximate arbitrary polynomials on arbitrary compacta in ℂ\Ω that have connected complement. This paper shows, for nonsimply connected domains Ω, how issues of capacity, thinness and topology affect the existence of holomorphic functions on Ω that have universal Taylor series expansions about a given point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armitage, D.H., Gardiner, S.J.: Classical Potential Theory. Springer, London (2001)

    Book  MATH  Google Scholar 

  2. Bacharoglou, A.G.: Universal Taylor series on doubly connected domains. Results Math. 53, 9–18 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayart, F.: Universal Taylor series on general doubly connected domains. Bull. Lond. Math. Soc. 37, 878–884 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chui, C., Parnes, M.N.: Approximation by overconvergence of power series. J. Math. Anal. Appl. 36, 693–696 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Costakis, G.: Some remarks on universal functions and Taylor series. Math. Proc. Camb. Philos. Soc. 128, 157–175 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Costakis, G.: Universal Taylor series on doubly connected domains in respect to every center. J. Approx. Theory 134, 1–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Costakis, G., Vlachou, V.: Universal Taylor series on non-simply connected domains. Analysis 26, 347–363 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gardiner, S.J.: Superharmonic extension and harmonic approximation. Ann. Inst. Fourier 44, 65–91 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gardiner, S.J.: Harmonic Approximation. London Mathematical Society Lecture Notes. Cambridge Univ. Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  10. Gardiner, S.J., Tsirivas, N.: Universal Taylor series for non-simply connected domains. C. R. Math. Acad. Sci. Paris 348, 521–524 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gehlen, W.: Overconvergent power series and conformal maps. J. Math. Anal. Appl. 198, 490–505 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gehlen, W., Luh, W., Müller, J.: On the existence of O-universal functions. Complex Var. Theory Appl. 41, 81–90 (2000)

    Article  MATH  Google Scholar 

  13. Hille, E.: Analytic Function Theory, vol. II. Ginn, Boston (1962)

    MATH  Google Scholar 

  14. Luh, W.: Universal approximation properties of overconvergent power series on open sets. Analysis 6, 191–207 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Melas, A.: Universal functions on nonsimply connected domains. Ann. Inst. Fourier 51, 1539–1551 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Melas, A., Nestoridis, V.: Universality of Taylor series as a generic property of holomorphic functions. Adv. Math. 157, 138–176 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Müller, J., Yavrian, A.: On polynomial sequences with restricted growth near infinity. Bull. Lond. Math. Soc. 34, 189–199 (2002)

    Article  MATH  Google Scholar 

  18. Müller, J., Vlachou, V., Yavrian, A.: Universal overconvergence and Ostrowski-gaps. Bull. Lond. Math. Soc. 38, 597–606 (2006)

    Article  MATH  Google Scholar 

  19. Nestoridis, V.: Universal Taylor series. Ann. Inst. Fourier 46, 1293–1306 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nestoridis, V.: An extension of the notion of universal Taylor series. In: Computational Methods and Function Theory, Nicosia. Ser. Approx. Decompos., vol. 11, pp. 421–430. World Sci. Publ., River Edge (1999)

    Google Scholar 

  21. Nestoridis, V., Papachristodoulos, C.: Universal Taylor series on arbitrary planar domains. C. R. Math. Acad. Sci. Paris 347(7–8), 363–367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ransford, T.: Potential Theory in the Complex Plane. Cambridge Univ. Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  23. Tsirivas, N.: Universal Faber and Taylor series on an unbounded domain of infinite connectivity. Complex Var. Theory Appl. doi:10.1080/17476933.2010.504832

  24. Tsirivas, N., Vlachou, V.: Universal Faber series with Hadamard–Ostrowski gaps. Comput. Methods Funct. Theory 10, 155–165 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Vlachou, V.: A universal Taylor series in the doubly connected domain ℂ\{1}. Complex Var. Theory Appl. 47, 123–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vlachou, V.: Universal Taylor series on a non-simply connected domain and Hadamard–Ostrowski gaps. In: Complex and Harmonic Analysis, pp. 221–229. DEStech Publ., Inc., Lancaster (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Gardiner.

Additional information

Communicated by Vilmos Totik.

This research was supported by Science Foundation Ireland under Grant 09/RFP/MTH2149, and is also part of the program of the ESF Network “Harmonic and Complex Analysis and Applications” (HCAA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardiner, S.J. Existence of Universal Taylor Series for Nonsimply Connected Domains. Constr Approx 35, 245–257 (2012). https://doi.org/10.1007/s00365-011-9133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-011-9133-z

Keywords

Mathematics Subject Classification (2000)

Navigation