Skip to main content
Log in

A Generalized Radon Transform on the Plane

  • Published:
Constructive Approximation Aims and scope

Abstract

A new generalized Radon transform R α, β on the plane for functions even in each variable is defined which has natural connections with the bivariate Hankel transform, the generalized biaxially symmetric potential operator Δα, β, and the Jacobi polynomials \(P_{k}^{(\beta,\,\alpha)}(t)\). The transform R α, β and its dual \(R_{\alpha,\,\beta}^{\ast}\) are studied in a systematic way, and in particular, the generalized Fuglede formula and some inversion formulas for R α, β for functions in \(L_{\alpha,\,\beta}^{p}(\mathbb{R}^{2}_{+})\) are obtained in terms of the bivariate Hankel–Riesz potential. Moreover, the transform R α, β is used to represent the solutions of the partial differential equations \(Lu:=\sum_{j=1}^{m}a_{j}\Delta_{\alpha,\,\beta}^{j}u=f\) with constant coefficients a j and the Cauchy problem for the generalized wave equation associated with the operator Δα, β. Another application is that, by an invariant property of R α, β, a new product formula for the Jacobi polynomials of the type \(P_{k}^{(\beta,\,\alpha)}(s)C_{2k}^{\alpha+\beta+1}(t)=c\int\!\!\int P_{k}^{(\beta,\,\alpha)}\) is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askey, A.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia (1975)

    Google Scholar 

  2. Benedek, A., Panzone, R.: The spaces L p with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beylkin, G.: The inversion problem and applications of the generalized Radon transform. Commun. Pure. Appl. Math. 37, 579–599 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cormack, A.M., Quinto, E.T.: A Radon transform on spheres through the origin in ℝn and applications to the Darboux equation. Trans. Am. Math. Soc. 260, 575–561 (1980)

    MATH  MathSciNet  Google Scholar 

  5. Deans, S.R.: Gegenbauer transforms via the Radon transform. SIAM J. Math. Anal. 10(3), 577–585 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  7. Ehrenpreis, L.: The Universality of the Radon Transform. Oxford University Press Inc., New York (2003)

    Book  MATH  Google Scholar 

  8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vols. I and II. McGraw-Hill, New York (1953)

    Google Scholar 

  9. Fuglede, B.: An integral formula. Math. Scand. 6, 207–212 (1958)

    MATH  MathSciNet  Google Scholar 

  10. Gelfand, I.M., Graev, M.I., Vilenkin, N.Ya.: Generalized Functions. Integral Geometry and Representation Theory, vol. 5. Academic Press, New York (1966)

    Google Scholar 

  11. Helgason, S.: The Radon Transform, 2nd edn. Birkhäuser, Berlin (1999)

    MATH  Google Scholar 

  12. Hirschman, I.I. Jr.: Variation diminishing Hankel transforms. J. Anal. Math. 8, 307–336 (1960/61)

    Article  MathSciNet  Google Scholar 

  13. John, F.: Plane Waves and Spherical Means: Applied to Partial Differential Equations. Interscience, New York (1955)

    MATH  Google Scholar 

  14. Koornwinder, T.H.: Jacobi polynomials II. An analytic proof of the product formula. SIAM J. Math. Anal. 5, 125–137 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lax, P.D., Phillips, R.S.: The Paley–Wiener theorem for the Radon transform. Commun. Pure. Appl. Math. 23, 409–424 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lions, J.L.: Opérateurs de Delsarte et problèmes mixtes. Bull. Soc. Math. France 84, 9–95 (1956)

    MATH  MathSciNet  Google Scholar 

  17. Ludwig, D.: The Radon transform on Euclidean space. Commun. Pure. Appl. Math. 19, 49–81 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  18. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    MATH  Google Scholar 

  19. Oberlin, D.M., Stein, E.M.: Mapping properties of the Radon transform. Indiana Univ. Math. J. 31, 641–650 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ournycheva, E., Rubin, B.: An analogue of the Fuglede formula in integral geometry on matrix spaces. arXiv:math/0401127v1 (2004)

  21. Rhee, H.: A representation of the solutions of the Darboux equation in odd-dimensional spaces. Trans. Am. Math. Soc. 150, 491–498 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rubin, B.: Reconstruction of functions from their integrals over k-planes. Isr. J. Math. 141, 93–117 (2004)

    Article  MATH  Google Scholar 

  23. Samko, S.G.: A new approach to the inversion of the Riesz potential operator. Fract. Calc. Appl. Anal. 1, 225–245 (1998)

    MATH  MathSciNet  Google Scholar 

  24. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    MATH  Google Scholar 

  25. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton (1970)

    MATH  Google Scholar 

  26. Stempak, K.: La théorie de Littlewood–Paley pour la transformation de Fourier–Bessel. C. R. Acad. Sci. Paris Sér. I 303, 15–19 (1986)

    MATH  MathSciNet  Google Scholar 

  27. Titchmarsh, E.C.: Hankel transforms. Proc. Lond. Math. Soc. 45, 458–474 (1922)

    Google Scholar 

  28. Trèves, F.: Équations aux dérivées partielles inhomogènes à coefficients constants dépendant de paramètres. Ann. Inst. Fourier (Grenoble) 13, 123–138 (1963)

    MATH  MathSciNet  Google Scholar 

  29. Trimèche, K.: Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur (0,+∞). J. Math. Pures Appl. 60, 51–98 (1981)

    MATH  MathSciNet  Google Scholar 

  30. Trimèche, K.: Generalized Harmonic Analysis and Wavelet Packets, Gordon & Breach, New York (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongkai Li.

Additional information

Communicated by Edward B. Saff.

Dedicated to Professor Leetsch C. Hsu on the occasion of his 90th birthday.

Work supported by the National Natural Science Foundation of China (No. 10571122, 10971141), the Beijing Natural Science Foundation (No. 1092004), the Project of Excellent Young Teachers and the Doctoral Programme Foundation of National Education Ministry of China, and the Project of Beijing Education Ministry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Song, F. A Generalized Radon Transform on the Plane. Constr Approx 33, 93–123 (2011). https://doi.org/10.1007/s00365-010-9099-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9099-2

Keywords

Mathematics Subject Classification (2000)

Navigation