Skip to main content
Log in

Construction of Optimal Cubature Formulas Related to Computer Tomography

  • Published:
Constructive Approximation Aims and scope

Abstract

We study the problem of the optimization of approximate integration on the class of functions defined on the parallelepiped Π d =[0,a 1]×⋅⋅⋅×[0,a d ], a 1,…,a d >0, having a given majorant for the modulus of continuity (relative to the l 1-metric in ℝd). An optimal cubature formula, which uses as information integrals of f along intersections of Π d with n arbitrary (d−1)-dimensional hyperplanes in ℝd (d>1) is obtained. We also find an asymptotically optimal sequence of cubature formulas, whose information functionals are integrals of f along intersections of Π d with shifts of (d−2)-dimensional coordinate subspaces of ℝd (d>2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko, V.F.: Asymptotically exact estimate of the remainder of the best cubature formulae for certain classes of functions. Mat. Zametki 19(3), 313–322 (1976) (in Russian); Math Notes 19, 187–193 (1976)

    MathSciNet  Google Scholar 

  2. Babenko, V.F.: Exact asymptotic estimates of the remainders of weighted cubature formulas that are optimal for certain classes of functions. Mat. Zametki 20(4), 589–595 (1976) (in Russian)

    MATH  MathSciNet  Google Scholar 

  3. Babenko, V.F.: On the optimal error bound for cubature formulae on certain classes of continuous functions. Anal. Math. 3, 3–9 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babenko, V.F.: On a certain problem of optimal integration. In: Studies on Contemporary Problems of Integration and Approximations of Functions and Their Applications. Collection of Research Papers, pp. 3–13. Dnepropetrovsk State University, Dnepropetrovsk (1984) (in Russian)

    Google Scholar 

  5. Babenko, V.F.: Approximations, widths and optimal quadrature formulae for classes of periodic functions with rearrangement invariant sets of derivatives. Anal. Math. 13(4), 281–306 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babenko, V.F., Borodachov, S.V.: On optimization of cubature formulae for the classes of monotone functions of several variables. Vestn. Dnepr. Univ. Math. 7, 3–7 (2002) (in Russian)

    Google Scholar 

  7. Babenko, V.F., Borodachov, S.V.: On optimization of approximate integration over a d-dimensional ball. East J. Approx. 9(1), 95–109 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Babenko, V.F., Borodachov, S.V.: On the construction of optimal cubature formulae which use integrals over hyperspheres. J. Complex. 23(3), 346–358 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Babenko, V.F., Borodachov, S.V., Skorokhodov, D.S.: Optimal cubature formulae on certain classes of functions defined on a unit cube. Numer. Math. (to appear)

  10. Babenko, V.F., Skorokhodov, D.S.: On the best interval quadrature formulae for classes of differentiable periodic functions. J. Complex. 23(4–6), 890–917 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  12. Bojanov, B.D.: An extension of the Pizzetti formula for polyharmonic functions. Acta Math. Hung. 91(1–2), 99–113 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bojanov, B.D.: Cubature formulae for polyharmonic functions, Recent progress in multivariate approximation. In: Internat. Ser. Numer. Math., Witten-Bommerholz, 2000, vol. 137, pp. 49–74. Birkhäuser, Basel (2001)

    Google Scholar 

  14. Bojanov, B., Petrova, G.: Uniqueness of the Gaussian quadrature for a ball. J. Approx. Theory 104, 21–44 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bojanov, B.D., Dimitrov, D.K.: Gaussian extended cubature formulae for polyharmonic functions. Math. Comput. 70(234), 671–683 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Bojanov, B.D.: Optimal quadrature formulas. Usp. Mat. Nauk 60(6(366)), 33–52 (2005) (in Russian); translation in Russ. Math. Surv. 60(6), 1035–1055 (2005)

    MathSciNet  Google Scholar 

  17. Bojanov, B., Petrov, P.: Gaussian interval quadrature formulae for Tchebycheff systems. SIAM J. Numer. Anal. 43(2), 787–795 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bojanov, B.: Interpolation and integration based on averaged values. Approx. Pobab. Banach Cent. Publ. 72, 25–47 (2006)

    Article  MathSciNet  Google Scholar 

  19. Borodachov, S.V.: On optimization of interval quadrature formulae for certain non-symmetric classes of periodic functions. Vestn. Dnepr. Univ. Math. 4, 19–24 (1999) (in Russian)

    Google Scholar 

  20. Chernaya, E.V.: On the optimization of weighed cubature formulae on certain classes of continuous functions. East J. Approx. 1(1), 47–60 (1995)

    MathSciNet  Google Scholar 

  21. Dimitrov, D.K.: Integration of polyharmonic functions. Math. Comput. 65, 1269–1281 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fejes-Toth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum, 1st edn. Springer, Berlin–Gottingen–Heidelberg (1953) (German); 2nd edn. Springer, Berlin (1972)

    MATH  Google Scholar 

  23. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kantorovich, L.V.: On special methods of numerical integration of even and odd functions. Proc. Steklov Math. Inst. Akad. Nauk. USSR 28, 3–25 (1949)

    MathSciNet  Google Scholar 

  25. Korneichuk, N.P.: Best cubature formulae for certain classes of functions of several variables. Mat. Zametki 3(5), 565–576 (1968) (in Russian). English transl.: Math. Notes 3, 360–367 (1968)

    MathSciNet  Google Scholar 

  26. Ligun, A.A.: Best quadrature formulas for some classes of periodic functions. Mat. Zametki 24(5), 661–669 (1978) (in Russian)

    MATH  MathSciNet  Google Scholar 

  27. Lusternik, L.A.: Certain cubature formulas for double integrals. Dokl. Akad. Nauk SSSR 62(4), 449–452 (1948)

    MATH  Google Scholar 

  28. Motornyi, V.P.: On the best quadrature formula of the form \(\sum_{k=1}^{n}{p_{k}f(x_{k})}\) for some classes of differentiable periodic functions. Izv. Akad. Nauk SSSR, Ser. Mat. 38(3), 583–614 (1974) (in Russian). English transl.: Math. USSR Izv. 8(3), 591–620 (1974)

    MathSciNet  Google Scholar 

  29. Motornyi, V.P.: On the best interval quadrature formula in the class of functions with bounded r-th derivative. East J. Approx. 4(4), 459–478 (1998)

    MATH  MathSciNet  Google Scholar 

  30. Motornyi, V.P.: Investigations of Dnepropetrovsk mathematicians on the optimization of quadrature formulas. Ukr. Math. J. 42(1), 13–27 (1990)

    Article  MathSciNet  Google Scholar 

  31. Mysovskih, I.P.: Interpolatory Cubature Formulae, 1st edn. Nauka, Moscow (1981) (Russian)

    Google Scholar 

  32. Natterer, F.: The Mathematics of Computerized Tomography. Teubner/Wiley, Stuttgart/Chichester (1986), x+222 pp.

    MATH  Google Scholar 

  33. Nikol’skiy, S.M.: Quadrature Formulae, 4th edn. Nauka, Moscow (1988) (in Russian)

    Google Scholar 

  34. Nikol’skiy, S.M.: To the question on estimates of approximation by quadrature formulae. Usp. Mat. Nauk 5(2(36)), 165–177 (1950) (in Russian)

    Google Scholar 

  35. Petrova, G.: Uniqueness of the Gaussian extended cubature for polyharmonic functions. East J. Approx. 9(3), 269–275 (2003)

    MATH  MathSciNet  Google Scholar 

  36. Petrova, G.: Cubature formulae for spheres, simplices and balls. J. Comput. Appl. Math. 162(2), 483–496 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  37. Traub, J.F., Wozniakowski, H.: A General Theory of Optimal Algorithms. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  38. Žensykbaev, A.A.: The best quadrature formula for some classes of periodic differentiable functions. Izv. Akad. Nauk SSSR Ser. Mat. 41(5), 1110–1124 (1977) (in Russian)

    MATH  MathSciNet  Google Scholar 

  39. Žensykbaev, A.A.: Monosplines of minimal norm and optimal quadrature formulas. Usp. Mat. Nauk 36(4(220)), 107–159 (1981) (in Russian)

    Google Scholar 

  40. Žensykbaev, A.A.: Problems of Recovery of Operators. Institute of Computer Research, Moscow–Izhevsk (2003), 412 pp. (in Russian) (ISBN: 5-93972-268-7)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Borodachov.

Additional information

Communicated by Tim N.T. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babenko, V.F., Borodachov, S.V. & Skorokhodov, D.S. Construction of Optimal Cubature Formulas Related to Computer Tomography. Constr Approx 33, 313–330 (2011). https://doi.org/10.1007/s00365-010-9095-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-010-9095-6

Keywords

Mathematics Subject Classification (2000)

Navigation